File size: 4,888 Bytes
61ebe0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
# https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
#code originally taken from: https://github.com/ChenyangSi/FreeU (under MIT License)
import torch
def Fourier_filter(x, threshold, scale):
# FFT
x_freq = torch.fft.fftn(x.float(), dim=(-2, -1))
x_freq = torch.fft.fftshift(x_freq, dim=(-2, -1))
B, C, H, W = x_freq.shape
mask = torch.ones((B, C, H, W), device=x.device)
crow, ccol = H // 2, W //2
mask[..., crow - threshold:crow + threshold, ccol - threshold:ccol + threshold] = scale
x_freq = x_freq * mask
# IFFT
x_freq = torch.fft.ifftshift(x_freq, dim=(-2, -1))
x_filtered = torch.fft.ifftn(x_freq, dim=(-2, -1)).real
return x_filtered.to(x.dtype)
class FreeU:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"b1": ("FLOAT", {"default": 1.1, "min": 0.0, "max": 10.0, "step": 0.01}),
"b2": ("FLOAT", {"default": 1.2, "min": 0.0, "max": 10.0, "step": 0.01}),
"s1": ("FLOAT", {"default": 0.9, "min": 0.0, "max": 10.0, "step": 0.01}),
"s2": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "_for_testing"
def patch(self, model, b1, b2, s1, s2):
model_channels = model.model.model_config.unet_config["model_channels"]
scale_dict = {model_channels * 4: (b1, s1), model_channels * 2: (b2, s2)}
on_cpu_devices = {}
def output_block_patch(h, hsp, transformer_options):
scale = scale_dict.get(h.shape[1], None)
if scale is not None:
h[:,:h.shape[1] // 2] = h[:,:h.shape[1] // 2] * scale[0]
if hsp.device not in on_cpu_devices:
try:
hsp = Fourier_filter(hsp, threshold=1, scale=scale[1])
except:
print("Device", hsp.device, "does not support the torch.fft functions used in the FreeU node, switching to CPU.")
on_cpu_devices[hsp.device] = True
hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device)
else:
hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device)
return h, hsp
m = model.clone()
m.set_model_output_block_patch(output_block_patch)
return (m, )
class FreeU_V2:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"b1": ("FLOAT", {"default": 1.3, "min": 0.0, "max": 10.0, "step": 0.01}),
"b2": ("FLOAT", {"default": 1.4, "min": 0.0, "max": 10.0, "step": 0.01}),
"s1": ("FLOAT", {"default": 0.9, "min": 0.0, "max": 10.0, "step": 0.01}),
"s2": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "_for_testing"
def patch(self, model, b1, b2, s1, s2):
model_channels = model.model.model_config.unet_config["model_channels"]
scale_dict = {model_channels * 4: (b1, s1), model_channels * 2: (b2, s2)}
on_cpu_devices = {}
def output_block_patch(h, hsp, transformer_options):
scale = scale_dict.get(h.shape[1], None)
if scale is not None:
hidden_mean = h.mean(1).unsqueeze(1)
B = hidden_mean.shape[0]
hidden_max, _ = torch.max(hidden_mean.view(B, -1), dim=-1, keepdim=True)
hidden_min, _ = torch.min(hidden_mean.view(B, -1), dim=-1, keepdim=True)
hidden_mean = (hidden_mean - hidden_min.unsqueeze(2).unsqueeze(3)) / (hidden_max - hidden_min).unsqueeze(2).unsqueeze(3)
h[:,:h.shape[1] // 2] = h[:,:h.shape[1] // 2] * ((scale[0] - 1 ) * hidden_mean + 1)
if hsp.device not in on_cpu_devices:
try:
hsp = Fourier_filter(hsp, threshold=1, scale=scale[1])
except:
print("Device", hsp.device, "does not support the torch.fft functions used in the FreeU node, switching to CPU.")
on_cpu_devices[hsp.device] = True
hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device)
else:
hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device)
return h, hsp
m = model.clone()
m.set_model_output_block_patch(output_block_patch)
return (m, )
NODE_CLASS_MAPPINGS = {
"FreeU": FreeU,
"FreeU_V2": FreeU_V2,
}
|