File size: 12,864 Bytes
61ebe0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
from modules.patch import patch_all

patch_all()


import os
import einops
import torch
import numpy as np

import ldm_patched.modules.model_management
import ldm_patched.modules.model_detection
import ldm_patched.modules.model_patcher
import ldm_patched.modules.utils
import ldm_patched.modules.controlnet
import modules.sample_hijack
import ldm_patched.modules.samplers
import ldm_patched.modules.latent_formats
import modules.advanced_parameters

from ldm_patched.modules.sd import load_checkpoint_guess_config
from ldm_patched.contrib.external import VAEDecode, EmptyLatentImage, VAEEncode, VAEEncodeTiled, VAEDecodeTiled, \
    ControlNetApplyAdvanced
from ldm_patched.contrib.external_freelunch import FreeU_V2
from ldm_patched.modules.sample import prepare_mask
from modules.lora import match_lora
from ldm_patched.modules.lora import model_lora_keys_unet, model_lora_keys_clip
from modules.config import path_embeddings
from ldm_patched.contrib.external_model_advanced import ModelSamplingDiscrete


opEmptyLatentImage = EmptyLatentImage()
opVAEDecode = VAEDecode()
opVAEEncode = VAEEncode()
opVAEDecodeTiled = VAEDecodeTiled()
opVAEEncodeTiled = VAEEncodeTiled()
opControlNetApplyAdvanced = ControlNetApplyAdvanced()
opFreeU = FreeU_V2()
opModelSamplingDiscrete = ModelSamplingDiscrete()


class StableDiffusionModel:
    def __init__(self, unet=None, vae=None, clip=None, clip_vision=None, filename=None):
        self.unet = unet
        self.vae = vae
        self.clip = clip
        self.clip_vision = clip_vision
        self.filename = filename
        self.unet_with_lora = unet
        self.clip_with_lora = clip
        self.visited_loras = ''

        self.lora_key_map_unet = {}
        self.lora_key_map_clip = {}

        if self.unet is not None:
            self.lora_key_map_unet = model_lora_keys_unet(self.unet.model, self.lora_key_map_unet)
            self.lora_key_map_unet.update({x: x for x in self.unet.model.state_dict().keys()})

        if self.clip is not None:
            self.lora_key_map_clip = model_lora_keys_clip(self.clip.cond_stage_model, self.lora_key_map_clip)
            self.lora_key_map_clip.update({x: x for x in self.clip.cond_stage_model.state_dict().keys()})

    @torch.no_grad()
    @torch.inference_mode()
    def refresh_loras(self, loras):
        assert isinstance(loras, list)

        if self.visited_loras == str(loras):
            return

        self.visited_loras = str(loras)

        if self.unet is None:
            return

        print(f'Request to load LoRAs {str(loras)} for model [{self.filename}].')

        loras_to_load = []

        for name, weight in loras:
            if name == 'None':
                continue

            if os.path.exists(name):
                lora_filename = name
            else:
                lora_filename = os.path.join(modules.config.path_loras, name)

            if not os.path.exists(lora_filename):
                print(f'Lora file not found: {lora_filename}')
                continue

            loras_to_load.append((lora_filename, weight))

        self.unet_with_lora = self.unet.clone() if self.unet is not None else None
        self.clip_with_lora = self.clip.clone() if self.clip is not None else None

        for lora_filename, weight in loras_to_load:
            lora_unmatch = ldm_patched.modules.utils.load_torch_file(lora_filename, safe_load=False)
            lora_unet, lora_unmatch = match_lora(lora_unmatch, self.lora_key_map_unet)
            lora_clip, lora_unmatch = match_lora(lora_unmatch, self.lora_key_map_clip)

            if len(lora_unmatch) > 12:
                # model mismatch
                continue

            if len(lora_unmatch) > 0:
                print(f'Loaded LoRA [{lora_filename}] for model [{self.filename}] '
                      f'with unmatched keys {list(lora_unmatch.keys())}')

            if self.unet_with_lora is not None and len(lora_unet) > 0:
                loaded_keys = self.unet_with_lora.add_patches(lora_unet, weight)
                print(f'Loaded LoRA [{lora_filename}] for UNet [{self.filename}] '
                      f'with {len(loaded_keys)} keys at weight {weight}.')
                for item in lora_unet:
                    if item not in loaded_keys:
                        print("UNet LoRA key skipped: ", item)

            if self.clip_with_lora is not None and len(lora_clip) > 0:
                loaded_keys = self.clip_with_lora.add_patches(lora_clip, weight)
                print(f'Loaded LoRA [{lora_filename}] for CLIP [{self.filename}] '
                      f'with {len(loaded_keys)} keys at weight {weight}.')
                for item in lora_clip:
                    if item not in loaded_keys:
                        print("CLIP LoRA key skipped: ", item)


@torch.no_grad()
@torch.inference_mode()
def apply_freeu(model, b1, b2, s1, s2):
    return opFreeU.patch(model=model, b1=b1, b2=b2, s1=s1, s2=s2)[0]


@torch.no_grad()
@torch.inference_mode()
def load_controlnet(ckpt_filename):
    return ldm_patched.modules.controlnet.load_controlnet(ckpt_filename)


@torch.no_grad()
@torch.inference_mode()
def apply_controlnet(positive, negative, control_net, image, strength, start_percent, end_percent):
    return opControlNetApplyAdvanced.apply_controlnet(positive=positive, negative=negative, control_net=control_net,
        image=image, strength=strength, start_percent=start_percent, end_percent=end_percent)


@torch.no_grad()
@torch.inference_mode()
def load_model(ckpt_filename):
    unet, clip, vae, clip_vision = load_checkpoint_guess_config(ckpt_filename, embedding_directory=path_embeddings)
    return StableDiffusionModel(unet=unet, clip=clip, vae=vae, clip_vision=clip_vision, filename=ckpt_filename)


@torch.no_grad()
@torch.inference_mode()
def generate_empty_latent(width=1024, height=1024, batch_size=1):
    return opEmptyLatentImage.generate(width=width, height=height, batch_size=batch_size)[0]


@torch.no_grad()
@torch.inference_mode()
def decode_vae(vae, latent_image, tiled=False):
    if tiled:
        return opVAEDecodeTiled.decode(samples=latent_image, vae=vae, tile_size=512)[0]
    else:
        return opVAEDecode.decode(samples=latent_image, vae=vae)[0]


@torch.no_grad()
@torch.inference_mode()
def encode_vae(vae, pixels, tiled=False):
    if tiled:
        return opVAEEncodeTiled.encode(pixels=pixels, vae=vae, tile_size=512)[0]
    else:
        return opVAEEncode.encode(pixels=pixels, vae=vae)[0]


@torch.no_grad()
@torch.inference_mode()
def encode_vae_inpaint(vae, pixels, mask):
    assert mask.ndim == 3 and pixels.ndim == 4
    assert mask.shape[-1] == pixels.shape[-2]
    assert mask.shape[-2] == pixels.shape[-3]

    w = mask.round()[..., None]
    pixels = pixels * (1 - w) + 0.5 * w

    latent = vae.encode(pixels)
    B, C, H, W = latent.shape

    latent_mask = mask[:, None, :, :]
    latent_mask = torch.nn.functional.interpolate(latent_mask, size=(H * 8, W * 8), mode="bilinear").round()
    latent_mask = torch.nn.functional.max_pool2d(latent_mask, (8, 8)).round().to(latent)

    return latent, latent_mask


class VAEApprox(torch.nn.Module):
    def __init__(self):
        super(VAEApprox, self).__init__()
        self.conv1 = torch.nn.Conv2d(4, 8, (7, 7))
        self.conv2 = torch.nn.Conv2d(8, 16, (5, 5))
        self.conv3 = torch.nn.Conv2d(16, 32, (3, 3))
        self.conv4 = torch.nn.Conv2d(32, 64, (3, 3))
        self.conv5 = torch.nn.Conv2d(64, 32, (3, 3))
        self.conv6 = torch.nn.Conv2d(32, 16, (3, 3))
        self.conv7 = torch.nn.Conv2d(16, 8, (3, 3))
        self.conv8 = torch.nn.Conv2d(8, 3, (3, 3))
        self.current_type = None

    def forward(self, x):
        extra = 11
        x = torch.nn.functional.interpolate(x, (x.shape[2] * 2, x.shape[3] * 2))
        x = torch.nn.functional.pad(x, (extra, extra, extra, extra))
        for layer in [self.conv1, self.conv2, self.conv3, self.conv4, self.conv5, self.conv6, self.conv7, self.conv8]:
            x = layer(x)
            x = torch.nn.functional.leaky_relu(x, 0.1)
        return x


VAE_approx_models = {}


@torch.no_grad()
@torch.inference_mode()
def get_previewer(model):
    global VAE_approx_models

    from modules.config import path_vae_approx
    is_sdxl = isinstance(model.model.latent_format, ldm_patched.modules.latent_formats.SDXL)
    vae_approx_filename = os.path.join(path_vae_approx, 'xlvaeapp.pth' if is_sdxl else 'vaeapp_sd15.pth')

    if vae_approx_filename in VAE_approx_models:
        VAE_approx_model = VAE_approx_models[vae_approx_filename]
    else:
        sd = torch.load(vae_approx_filename, map_location='cpu')
        VAE_approx_model = VAEApprox()
        VAE_approx_model.load_state_dict(sd)
        del sd
        VAE_approx_model.eval()

        if ldm_patched.modules.model_management.should_use_fp16():
            VAE_approx_model.half()
            VAE_approx_model.current_type = torch.float16
        else:
            VAE_approx_model.float()
            VAE_approx_model.current_type = torch.float32

        VAE_approx_model.to(ldm_patched.modules.model_management.get_torch_device())
        VAE_approx_models[vae_approx_filename] = VAE_approx_model

    @torch.no_grad()
    @torch.inference_mode()
    def preview_function(x0, step, total_steps):
        with torch.no_grad():
            x_sample = x0.to(VAE_approx_model.current_type)
            x_sample = VAE_approx_model(x_sample) * 127.5 + 127.5
            x_sample = einops.rearrange(x_sample, 'b c h w -> b h w c')[0]
            x_sample = x_sample.cpu().numpy().clip(0, 255).astype(np.uint8)
            return x_sample

    return preview_function


@torch.no_grad()
@torch.inference_mode()
def ksampler(model, positive, negative, latent, seed=None, steps=30, cfg=7.0, sampler_name='dpmpp_2m_sde_gpu',
             scheduler='karras', denoise=1.0, disable_noise=False, start_step=None, last_step=None,
             force_full_denoise=False, callback_function=None, refiner=None, refiner_switch=-1,
             previewer_start=None, previewer_end=None, sigmas=None, noise_mean=None):

    if sigmas is not None:
        sigmas = sigmas.clone().to(ldm_patched.modules.model_management.get_torch_device())

    latent_image = latent["samples"]

    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
        batch_inds = latent["batch_index"] if "batch_index" in latent else None
        noise = ldm_patched.modules.sample.prepare_noise(latent_image, seed, batch_inds)

    if isinstance(noise_mean, torch.Tensor):
        noise = noise + noise_mean - torch.mean(noise, dim=1, keepdim=True)

    noise_mask = None
    if "noise_mask" in latent:
        noise_mask = latent["noise_mask"]

    previewer = get_previewer(model)

    if previewer_start is None:
        previewer_start = 0

    if previewer_end is None:
        previewer_end = steps

    def callback(step, x0, x, total_steps):
        ldm_patched.modules.model_management.throw_exception_if_processing_interrupted()
        y = None
        if previewer is not None and not modules.advanced_parameters.disable_preview:
            y = previewer(x0, previewer_start + step, previewer_end)
        if callback_function is not None:
            callback_function(previewer_start + step, x0, x, previewer_end, y)

    disable_pbar = False
    modules.sample_hijack.current_refiner = refiner
    modules.sample_hijack.refiner_switch_step = refiner_switch
    ldm_patched.modules.samplers.sample = modules.sample_hijack.sample_hacked

    try:
        samples = ldm_patched.modules.sample.sample(model,
                                                    noise, steps, cfg, sampler_name, scheduler,
                                                    positive, negative, latent_image,
                                                    denoise=denoise, disable_noise=disable_noise,
                                                    start_step=start_step,
                                                    last_step=last_step,
                                                    force_full_denoise=force_full_denoise, noise_mask=noise_mask,
                                                    callback=callback,
                                                    disable_pbar=disable_pbar, seed=seed, sigmas=sigmas)

        out = latent.copy()
        out["samples"] = samples
    finally:
        modules.sample_hijack.current_refiner = None

    return out


@torch.no_grad()
@torch.inference_mode()
def pytorch_to_numpy(x):
    return [np.clip(255. * y.cpu().numpy(), 0, 255).astype(np.uint8) for y in x]


@torch.no_grad()
@torch.inference_mode()
def numpy_to_pytorch(x):
    y = x.astype(np.float32) / 255.0
    y = y[None]
    y = np.ascontiguousarray(y.copy())
    y = torch.from_numpy(y).float()
    return y