File size: 3,877 Bytes
61ebe0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import json
import gradio as gr
import modules.config
def load_parameter_button_click(raw_prompt_txt, is_generating):
loaded_parameter_dict = json.loads(raw_prompt_txt)
assert isinstance(loaded_parameter_dict, dict)
results = [True, 1]
try:
h = loaded_parameter_dict.get('Prompt', None)
assert isinstance(h, str)
results.append(h)
except:
results.append(gr.update())
try:
h = loaded_parameter_dict.get('Negative Prompt', None)
assert isinstance(h, str)
results.append(h)
except:
results.append(gr.update())
try:
h = loaded_parameter_dict.get('Styles', None)
h = eval(h)
assert isinstance(h, list)
results.append(h)
except:
results.append(gr.update())
try:
h = loaded_parameter_dict.get('Performance', None)
assert isinstance(h, str)
results.append(h)
except:
results.append(gr.update())
try:
h = loaded_parameter_dict.get('Resolution', None)
width, height = eval(h)
formatted = modules.config.add_ratio(f'{width}*{height}')
if formatted in modules.config.available_aspect_ratios:
results.append(formatted)
results.append(-1)
results.append(-1)
else:
results.append(gr.update())
results.append(width)
results.append(height)
except:
results.append(gr.update())
results.append(gr.update())
results.append(gr.update())
try:
h = loaded_parameter_dict.get('Sharpness', None)
assert h is not None
h = float(h)
results.append(h)
except:
results.append(gr.update())
try:
h = loaded_parameter_dict.get('Guidance Scale', None)
assert h is not None
h = float(h)
results.append(h)
except:
results.append(gr.update())
try:
h = loaded_parameter_dict.get('ADM Guidance', None)
p, n, e = eval(h)
results.append(float(p))
results.append(float(n))
results.append(float(e))
except:
results.append(gr.update())
results.append(gr.update())
results.append(gr.update())
try:
h = loaded_parameter_dict.get('Base Model', None)
assert isinstance(h, str)
results.append(h)
except:
results.append(gr.update())
try:
h = loaded_parameter_dict.get('Refiner Model', None)
assert isinstance(h, str)
results.append(h)
except:
results.append(gr.update())
try:
h = loaded_parameter_dict.get('Refiner Switch', None)
assert h is not None
h = float(h)
results.append(h)
except:
results.append(gr.update())
try:
h = loaded_parameter_dict.get('Sampler', None)
assert isinstance(h, str)
results.append(h)
except:
results.append(gr.update())
try:
h = loaded_parameter_dict.get('Scheduler', None)
assert isinstance(h, str)
results.append(h)
except:
results.append(gr.update())
try:
h = loaded_parameter_dict.get('Seed', None)
assert h is not None
h = int(h)
results.append(False)
results.append(h)
except:
results.append(gr.update())
results.append(gr.update())
if is_generating:
results.append(gr.update())
else:
results.append(gr.update(visible=True))
results.append(gr.update(visible=False))
for i in range(1, 6):
try:
n, w = loaded_parameter_dict.get(f'LoRA {i}').split(' : ')
w = float(w)
results.append(n)
results.append(w)
except:
results.append(gr.update())
results.append(gr.update())
return results
|