|
from abc import abstractmethod |
|
import math |
|
|
|
import numpy as np |
|
import torch as th |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from einops import rearrange |
|
from functools import partial |
|
|
|
from .util import ( |
|
checkpoint, |
|
avg_pool_nd, |
|
zero_module, |
|
timestep_embedding, |
|
AlphaBlender, |
|
) |
|
from ..attention import SpatialTransformer, SpatialVideoTransformer, default |
|
from ldm_patched.ldm.util import exists |
|
import ldm_patched.modules.ops |
|
ops = ldm_patched.modules.ops.disable_weight_init |
|
|
|
class TimestepBlock(nn.Module): |
|
""" |
|
Any module where forward() takes timestep embeddings as a second argument. |
|
""" |
|
|
|
@abstractmethod |
|
def forward(self, x, emb): |
|
""" |
|
Apply the module to `x` given `emb` timestep embeddings. |
|
""" |
|
|
|
|
|
def forward_timestep_embed(ts, x, emb, context=None, transformer_options={}, output_shape=None, time_context=None, num_video_frames=None, image_only_indicator=None): |
|
for layer in ts: |
|
if isinstance(layer, VideoResBlock): |
|
x = layer(x, emb, num_video_frames, image_only_indicator) |
|
elif isinstance(layer, TimestepBlock): |
|
x = layer(x, emb) |
|
elif isinstance(layer, SpatialVideoTransformer): |
|
x = layer(x, context, time_context, num_video_frames, image_only_indicator, transformer_options) |
|
if "transformer_index" in transformer_options: |
|
transformer_options["transformer_index"] += 1 |
|
elif isinstance(layer, SpatialTransformer): |
|
x = layer(x, context, transformer_options) |
|
if "transformer_index" in transformer_options: |
|
transformer_options["transformer_index"] += 1 |
|
elif isinstance(layer, Upsample): |
|
x = layer(x, output_shape=output_shape) |
|
else: |
|
x = layer(x) |
|
return x |
|
|
|
class TimestepEmbedSequential(nn.Sequential, TimestepBlock): |
|
""" |
|
A sequential module that passes timestep embeddings to the children that |
|
support it as an extra input. |
|
""" |
|
|
|
def forward(self, *args, **kwargs): |
|
return forward_timestep_embed(self, *args, **kwargs) |
|
|
|
class Upsample(nn.Module): |
|
""" |
|
An upsampling layer with an optional convolution. |
|
:param channels: channels in the inputs and outputs. |
|
:param use_conv: a bool determining if a convolution is applied. |
|
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then |
|
upsampling occurs in the inner-two dimensions. |
|
""" |
|
|
|
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=ops): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.dims = dims |
|
if use_conv: |
|
self.conv = operations.conv_nd(dims, self.channels, self.out_channels, 3, padding=padding, dtype=dtype, device=device) |
|
|
|
def forward(self, x, output_shape=None): |
|
assert x.shape[1] == self.channels |
|
if self.dims == 3: |
|
shape = [x.shape[2], x.shape[3] * 2, x.shape[4] * 2] |
|
if output_shape is not None: |
|
shape[1] = output_shape[3] |
|
shape[2] = output_shape[4] |
|
else: |
|
shape = [x.shape[2] * 2, x.shape[3] * 2] |
|
if output_shape is not None: |
|
shape[0] = output_shape[2] |
|
shape[1] = output_shape[3] |
|
|
|
x = F.interpolate(x, size=shape, mode="nearest") |
|
if self.use_conv: |
|
x = self.conv(x) |
|
return x |
|
|
|
class Downsample(nn.Module): |
|
""" |
|
A downsampling layer with an optional convolution. |
|
:param channels: channels in the inputs and outputs. |
|
:param use_conv: a bool determining if a convolution is applied. |
|
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then |
|
downsampling occurs in the inner-two dimensions. |
|
""" |
|
|
|
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=ops): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.dims = dims |
|
stride = 2 if dims != 3 else (1, 2, 2) |
|
if use_conv: |
|
self.op = operations.conv_nd( |
|
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding, dtype=dtype, device=device |
|
) |
|
else: |
|
assert self.channels == self.out_channels |
|
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) |
|
|
|
def forward(self, x): |
|
assert x.shape[1] == self.channels |
|
return self.op(x) |
|
|
|
|
|
class ResBlock(TimestepBlock): |
|
""" |
|
A residual block that can optionally change the number of channels. |
|
:param channels: the number of input channels. |
|
:param emb_channels: the number of timestep embedding channels. |
|
:param dropout: the rate of dropout. |
|
:param out_channels: if specified, the number of out channels. |
|
:param use_conv: if True and out_channels is specified, use a spatial |
|
convolution instead of a smaller 1x1 convolution to change the |
|
channels in the skip connection. |
|
:param dims: determines if the signal is 1D, 2D, or 3D. |
|
:param use_checkpoint: if True, use gradient checkpointing on this module. |
|
:param up: if True, use this block for upsampling. |
|
:param down: if True, use this block for downsampling. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
channels, |
|
emb_channels, |
|
dropout, |
|
out_channels=None, |
|
use_conv=False, |
|
use_scale_shift_norm=False, |
|
dims=2, |
|
use_checkpoint=False, |
|
up=False, |
|
down=False, |
|
kernel_size=3, |
|
exchange_temb_dims=False, |
|
skip_t_emb=False, |
|
dtype=None, |
|
device=None, |
|
operations=ops |
|
): |
|
super().__init__() |
|
self.channels = channels |
|
self.emb_channels = emb_channels |
|
self.dropout = dropout |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.use_checkpoint = use_checkpoint |
|
self.use_scale_shift_norm = use_scale_shift_norm |
|
self.exchange_temb_dims = exchange_temb_dims |
|
|
|
if isinstance(kernel_size, list): |
|
padding = [k // 2 for k in kernel_size] |
|
else: |
|
padding = kernel_size // 2 |
|
|
|
self.in_layers = nn.Sequential( |
|
operations.GroupNorm(32, channels, dtype=dtype, device=device), |
|
nn.SiLU(), |
|
operations.conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device), |
|
) |
|
|
|
self.updown = up or down |
|
|
|
if up: |
|
self.h_upd = Upsample(channels, False, dims, dtype=dtype, device=device) |
|
self.x_upd = Upsample(channels, False, dims, dtype=dtype, device=device) |
|
elif down: |
|
self.h_upd = Downsample(channels, False, dims, dtype=dtype, device=device) |
|
self.x_upd = Downsample(channels, False, dims, dtype=dtype, device=device) |
|
else: |
|
self.h_upd = self.x_upd = nn.Identity() |
|
|
|
self.skip_t_emb = skip_t_emb |
|
if self.skip_t_emb: |
|
self.emb_layers = None |
|
self.exchange_temb_dims = False |
|
else: |
|
self.emb_layers = nn.Sequential( |
|
nn.SiLU(), |
|
operations.Linear( |
|
emb_channels, |
|
2 * self.out_channels if use_scale_shift_norm else self.out_channels, dtype=dtype, device=device |
|
), |
|
) |
|
self.out_layers = nn.Sequential( |
|
operations.GroupNorm(32, self.out_channels, dtype=dtype, device=device), |
|
nn.SiLU(), |
|
nn.Dropout(p=dropout), |
|
operations.conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device) |
|
, |
|
) |
|
|
|
if self.out_channels == channels: |
|
self.skip_connection = nn.Identity() |
|
elif use_conv: |
|
self.skip_connection = operations.conv_nd( |
|
dims, channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device |
|
) |
|
else: |
|
self.skip_connection = operations.conv_nd(dims, channels, self.out_channels, 1, dtype=dtype, device=device) |
|
|
|
def forward(self, x, emb): |
|
""" |
|
Apply the block to a Tensor, conditioned on a timestep embedding. |
|
:param x: an [N x C x ...] Tensor of features. |
|
:param emb: an [N x emb_channels] Tensor of timestep embeddings. |
|
:return: an [N x C x ...] Tensor of outputs. |
|
""" |
|
return checkpoint( |
|
self._forward, (x, emb), self.parameters(), self.use_checkpoint |
|
) |
|
|
|
|
|
def _forward(self, x, emb): |
|
if self.updown: |
|
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] |
|
h = in_rest(x) |
|
h = self.h_upd(h) |
|
x = self.x_upd(x) |
|
h = in_conv(h) |
|
else: |
|
h = self.in_layers(x) |
|
|
|
emb_out = None |
|
if not self.skip_t_emb: |
|
emb_out = self.emb_layers(emb).type(h.dtype) |
|
while len(emb_out.shape) < len(h.shape): |
|
emb_out = emb_out[..., None] |
|
if self.use_scale_shift_norm: |
|
out_norm, out_rest = self.out_layers[0], self.out_layers[1:] |
|
h = out_norm(h) |
|
if emb_out is not None: |
|
scale, shift = th.chunk(emb_out, 2, dim=1) |
|
h *= (1 + scale) |
|
h += shift |
|
h = out_rest(h) |
|
else: |
|
if emb_out is not None: |
|
if self.exchange_temb_dims: |
|
emb_out = rearrange(emb_out, "b t c ... -> b c t ...") |
|
h = h + emb_out |
|
h = self.out_layers(h) |
|
return self.skip_connection(x) + h |
|
|
|
|
|
class VideoResBlock(ResBlock): |
|
def __init__( |
|
self, |
|
channels: int, |
|
emb_channels: int, |
|
dropout: float, |
|
video_kernel_size=3, |
|
merge_strategy: str = "fixed", |
|
merge_factor: float = 0.5, |
|
out_channels=None, |
|
use_conv: bool = False, |
|
use_scale_shift_norm: bool = False, |
|
dims: int = 2, |
|
use_checkpoint: bool = False, |
|
up: bool = False, |
|
down: bool = False, |
|
dtype=None, |
|
device=None, |
|
operations=ops |
|
): |
|
super().__init__( |
|
channels, |
|
emb_channels, |
|
dropout, |
|
out_channels=out_channels, |
|
use_conv=use_conv, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
up=up, |
|
down=down, |
|
dtype=dtype, |
|
device=device, |
|
operations=operations |
|
) |
|
|
|
self.time_stack = ResBlock( |
|
default(out_channels, channels), |
|
emb_channels, |
|
dropout=dropout, |
|
dims=3, |
|
out_channels=default(out_channels, channels), |
|
use_scale_shift_norm=False, |
|
use_conv=False, |
|
up=False, |
|
down=False, |
|
kernel_size=video_kernel_size, |
|
use_checkpoint=use_checkpoint, |
|
exchange_temb_dims=True, |
|
dtype=dtype, |
|
device=device, |
|
operations=operations |
|
) |
|
self.time_mixer = AlphaBlender( |
|
alpha=merge_factor, |
|
merge_strategy=merge_strategy, |
|
rearrange_pattern="b t -> b 1 t 1 1", |
|
) |
|
|
|
def forward( |
|
self, |
|
x: th.Tensor, |
|
emb: th.Tensor, |
|
num_video_frames: int, |
|
image_only_indicator = None, |
|
) -> th.Tensor: |
|
x = super().forward(x, emb) |
|
|
|
x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames) |
|
x = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames) |
|
|
|
x = self.time_stack( |
|
x, rearrange(emb, "(b t) ... -> b t ...", t=num_video_frames) |
|
) |
|
x = self.time_mixer( |
|
x_spatial=x_mix, x_temporal=x, image_only_indicator=image_only_indicator |
|
) |
|
x = rearrange(x, "b c t h w -> (b t) c h w") |
|
return x |
|
|
|
|
|
class Timestep(nn.Module): |
|
def __init__(self, dim): |
|
super().__init__() |
|
self.dim = dim |
|
|
|
def forward(self, t): |
|
return timestep_embedding(t, self.dim) |
|
|
|
def apply_control(h, control, name): |
|
if control is not None and name in control and len(control[name]) > 0: |
|
ctrl = control[name].pop() |
|
if ctrl is not None: |
|
try: |
|
h += ctrl |
|
except: |
|
print("warning control could not be applied", h.shape, ctrl.shape) |
|
return h |
|
|
|
class UNetModel(nn.Module): |
|
""" |
|
The full UNet model with attention and timestep embedding. |
|
:param in_channels: channels in the input Tensor. |
|
:param model_channels: base channel count for the model. |
|
:param out_channels: channels in the output Tensor. |
|
:param num_res_blocks: number of residual blocks per downsample. |
|
:param dropout: the dropout probability. |
|
:param channel_mult: channel multiplier for each level of the UNet. |
|
:param conv_resample: if True, use learned convolutions for upsampling and |
|
downsampling. |
|
:param dims: determines if the signal is 1D, 2D, or 3D. |
|
:param num_classes: if specified (as an int), then this model will be |
|
class-conditional with `num_classes` classes. |
|
:param use_checkpoint: use gradient checkpointing to reduce memory usage. |
|
:param num_heads: the number of attention heads in each attention layer. |
|
:param num_heads_channels: if specified, ignore num_heads and instead use |
|
a fixed channel width per attention head. |
|
:param num_heads_upsample: works with num_heads to set a different number |
|
of heads for upsampling. Deprecated. |
|
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism. |
|
:param resblock_updown: use residual blocks for up/downsampling. |
|
:param use_new_attention_order: use a different attention pattern for potentially |
|
increased efficiency. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
image_size, |
|
in_channels, |
|
model_channels, |
|
out_channels, |
|
num_res_blocks, |
|
dropout=0, |
|
channel_mult=(1, 2, 4, 8), |
|
conv_resample=True, |
|
dims=2, |
|
num_classes=None, |
|
use_checkpoint=False, |
|
dtype=th.float32, |
|
num_heads=-1, |
|
num_head_channels=-1, |
|
num_heads_upsample=-1, |
|
use_scale_shift_norm=False, |
|
resblock_updown=False, |
|
use_new_attention_order=False, |
|
use_spatial_transformer=False, |
|
transformer_depth=1, |
|
context_dim=None, |
|
n_embed=None, |
|
legacy=True, |
|
disable_self_attentions=None, |
|
num_attention_blocks=None, |
|
disable_middle_self_attn=False, |
|
use_linear_in_transformer=False, |
|
adm_in_channels=None, |
|
transformer_depth_middle=None, |
|
transformer_depth_output=None, |
|
use_temporal_resblock=False, |
|
use_temporal_attention=False, |
|
time_context_dim=None, |
|
extra_ff_mix_layer=False, |
|
use_spatial_context=False, |
|
merge_strategy=None, |
|
merge_factor=0.0, |
|
video_kernel_size=None, |
|
disable_temporal_crossattention=False, |
|
max_ddpm_temb_period=10000, |
|
device=None, |
|
operations=ops, |
|
): |
|
super().__init__() |
|
assert use_spatial_transformer == True, "use_spatial_transformer has to be true" |
|
if use_spatial_transformer: |
|
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...' |
|
|
|
if context_dim is not None: |
|
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' |
|
|
|
|
|
|
|
|
|
if num_heads_upsample == -1: |
|
num_heads_upsample = num_heads |
|
|
|
if num_heads == -1: |
|
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' |
|
|
|
if num_head_channels == -1: |
|
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' |
|
|
|
self.image_size = image_size |
|
self.in_channels = in_channels |
|
self.model_channels = model_channels |
|
self.out_channels = out_channels |
|
|
|
if isinstance(num_res_blocks, int): |
|
self.num_res_blocks = len(channel_mult) * [num_res_blocks] |
|
else: |
|
if len(num_res_blocks) != len(channel_mult): |
|
raise ValueError("provide num_res_blocks either as an int (globally constant) or " |
|
"as a list/tuple (per-level) with the same length as channel_mult") |
|
self.num_res_blocks = num_res_blocks |
|
|
|
if disable_self_attentions is not None: |
|
|
|
assert len(disable_self_attentions) == len(channel_mult) |
|
if num_attention_blocks is not None: |
|
assert len(num_attention_blocks) == len(self.num_res_blocks) |
|
|
|
transformer_depth = transformer_depth[:] |
|
transformer_depth_output = transformer_depth_output[:] |
|
|
|
self.dropout = dropout |
|
self.channel_mult = channel_mult |
|
self.conv_resample = conv_resample |
|
self.num_classes = num_classes |
|
self.use_checkpoint = use_checkpoint |
|
self.dtype = dtype |
|
self.num_heads = num_heads |
|
self.num_head_channels = num_head_channels |
|
self.num_heads_upsample = num_heads_upsample |
|
self.use_temporal_resblocks = use_temporal_resblock |
|
self.predict_codebook_ids = n_embed is not None |
|
|
|
self.default_num_video_frames = None |
|
self.default_image_only_indicator = None |
|
|
|
time_embed_dim = model_channels * 4 |
|
self.time_embed = nn.Sequential( |
|
operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device), |
|
nn.SiLU(), |
|
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device), |
|
) |
|
|
|
if self.num_classes is not None: |
|
if isinstance(self.num_classes, int): |
|
self.label_emb = nn.Embedding(num_classes, time_embed_dim) |
|
elif self.num_classes == "continuous": |
|
print("setting up linear c_adm embedding layer") |
|
self.label_emb = nn.Linear(1, time_embed_dim) |
|
elif self.num_classes == "sequential": |
|
assert adm_in_channels is not None |
|
self.label_emb = nn.Sequential( |
|
nn.Sequential( |
|
operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device), |
|
nn.SiLU(), |
|
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device), |
|
) |
|
) |
|
else: |
|
raise ValueError() |
|
|
|
self.input_blocks = nn.ModuleList( |
|
[ |
|
TimestepEmbedSequential( |
|
operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device) |
|
) |
|
] |
|
) |
|
self._feature_size = model_channels |
|
input_block_chans = [model_channels] |
|
ch = model_channels |
|
ds = 1 |
|
|
|
def get_attention_layer( |
|
ch, |
|
num_heads, |
|
dim_head, |
|
depth=1, |
|
context_dim=None, |
|
use_checkpoint=False, |
|
disable_self_attn=False, |
|
): |
|
if use_temporal_attention: |
|
return SpatialVideoTransformer( |
|
ch, |
|
num_heads, |
|
dim_head, |
|
depth=depth, |
|
context_dim=context_dim, |
|
time_context_dim=time_context_dim, |
|
dropout=dropout, |
|
ff_in=extra_ff_mix_layer, |
|
use_spatial_context=use_spatial_context, |
|
merge_strategy=merge_strategy, |
|
merge_factor=merge_factor, |
|
checkpoint=use_checkpoint, |
|
use_linear=use_linear_in_transformer, |
|
disable_self_attn=disable_self_attn, |
|
disable_temporal_crossattention=disable_temporal_crossattention, |
|
max_time_embed_period=max_ddpm_temb_period, |
|
dtype=self.dtype, device=device, operations=operations |
|
) |
|
else: |
|
return SpatialTransformer( |
|
ch, num_heads, dim_head, depth=depth, context_dim=context_dim, |
|
disable_self_attn=disable_self_attn, use_linear=use_linear_in_transformer, |
|
use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations |
|
) |
|
|
|
def get_resblock( |
|
merge_factor, |
|
merge_strategy, |
|
video_kernel_size, |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
out_channels, |
|
dims, |
|
use_checkpoint, |
|
use_scale_shift_norm, |
|
down=False, |
|
up=False, |
|
dtype=None, |
|
device=None, |
|
operations=ops |
|
): |
|
if self.use_temporal_resblocks: |
|
return VideoResBlock( |
|
merge_factor=merge_factor, |
|
merge_strategy=merge_strategy, |
|
video_kernel_size=video_kernel_size, |
|
channels=ch, |
|
emb_channels=time_embed_dim, |
|
dropout=dropout, |
|
out_channels=out_channels, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
down=down, |
|
up=up, |
|
dtype=dtype, |
|
device=device, |
|
operations=operations |
|
) |
|
else: |
|
return ResBlock( |
|
channels=ch, |
|
emb_channels=time_embed_dim, |
|
dropout=dropout, |
|
out_channels=out_channels, |
|
use_checkpoint=use_checkpoint, |
|
dims=dims, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
down=down, |
|
up=up, |
|
dtype=dtype, |
|
device=device, |
|
operations=operations |
|
) |
|
|
|
for level, mult in enumerate(channel_mult): |
|
for nr in range(self.num_res_blocks[level]): |
|
layers = [ |
|
get_resblock( |
|
merge_factor=merge_factor, |
|
merge_strategy=merge_strategy, |
|
video_kernel_size=video_kernel_size, |
|
ch=ch, |
|
time_embed_dim=time_embed_dim, |
|
dropout=dropout, |
|
out_channels=mult * model_channels, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
dtype=self.dtype, |
|
device=device, |
|
operations=operations, |
|
) |
|
] |
|
ch = mult * model_channels |
|
num_transformers = transformer_depth.pop(0) |
|
if num_transformers > 0: |
|
if num_head_channels == -1: |
|
dim_head = ch // num_heads |
|
else: |
|
num_heads = ch // num_head_channels |
|
dim_head = num_head_channels |
|
if legacy: |
|
|
|
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels |
|
if exists(disable_self_attentions): |
|
disabled_sa = disable_self_attentions[level] |
|
else: |
|
disabled_sa = False |
|
|
|
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]: |
|
layers.append(get_attention_layer( |
|
ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim, |
|
disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint) |
|
) |
|
self.input_blocks.append(TimestepEmbedSequential(*layers)) |
|
self._feature_size += ch |
|
input_block_chans.append(ch) |
|
if level != len(channel_mult) - 1: |
|
out_ch = ch |
|
self.input_blocks.append( |
|
TimestepEmbedSequential( |
|
get_resblock( |
|
merge_factor=merge_factor, |
|
merge_strategy=merge_strategy, |
|
video_kernel_size=video_kernel_size, |
|
ch=ch, |
|
time_embed_dim=time_embed_dim, |
|
dropout=dropout, |
|
out_channels=out_ch, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
down=True, |
|
dtype=self.dtype, |
|
device=device, |
|
operations=operations |
|
) |
|
if resblock_updown |
|
else Downsample( |
|
ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations |
|
) |
|
) |
|
) |
|
ch = out_ch |
|
input_block_chans.append(ch) |
|
ds *= 2 |
|
self._feature_size += ch |
|
|
|
if num_head_channels == -1: |
|
dim_head = ch // num_heads |
|
else: |
|
num_heads = ch // num_head_channels |
|
dim_head = num_head_channels |
|
if legacy: |
|
|
|
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels |
|
mid_block = [ |
|
get_resblock( |
|
merge_factor=merge_factor, |
|
merge_strategy=merge_strategy, |
|
video_kernel_size=video_kernel_size, |
|
ch=ch, |
|
time_embed_dim=time_embed_dim, |
|
dropout=dropout, |
|
out_channels=None, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
dtype=self.dtype, |
|
device=device, |
|
operations=operations |
|
)] |
|
if transformer_depth_middle >= 0: |
|
mid_block += [get_attention_layer( |
|
ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim, |
|
disable_self_attn=disable_middle_self_attn, use_checkpoint=use_checkpoint |
|
), |
|
get_resblock( |
|
merge_factor=merge_factor, |
|
merge_strategy=merge_strategy, |
|
video_kernel_size=video_kernel_size, |
|
ch=ch, |
|
time_embed_dim=time_embed_dim, |
|
dropout=dropout, |
|
out_channels=None, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
dtype=self.dtype, |
|
device=device, |
|
operations=operations |
|
)] |
|
self.middle_block = TimestepEmbedSequential(*mid_block) |
|
self._feature_size += ch |
|
|
|
self.output_blocks = nn.ModuleList([]) |
|
for level, mult in list(enumerate(channel_mult))[::-1]: |
|
for i in range(self.num_res_blocks[level] + 1): |
|
ich = input_block_chans.pop() |
|
layers = [ |
|
get_resblock( |
|
merge_factor=merge_factor, |
|
merge_strategy=merge_strategy, |
|
video_kernel_size=video_kernel_size, |
|
ch=ch + ich, |
|
time_embed_dim=time_embed_dim, |
|
dropout=dropout, |
|
out_channels=model_channels * mult, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
dtype=self.dtype, |
|
device=device, |
|
operations=operations |
|
) |
|
] |
|
ch = model_channels * mult |
|
num_transformers = transformer_depth_output.pop() |
|
if num_transformers > 0: |
|
if num_head_channels == -1: |
|
dim_head = ch // num_heads |
|
else: |
|
num_heads = ch // num_head_channels |
|
dim_head = num_head_channels |
|
if legacy: |
|
|
|
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels |
|
if exists(disable_self_attentions): |
|
disabled_sa = disable_self_attentions[level] |
|
else: |
|
disabled_sa = False |
|
|
|
if not exists(num_attention_blocks) or i < num_attention_blocks[level]: |
|
layers.append( |
|
get_attention_layer( |
|
ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim, |
|
disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint |
|
) |
|
) |
|
if level and i == self.num_res_blocks[level]: |
|
out_ch = ch |
|
layers.append( |
|
get_resblock( |
|
merge_factor=merge_factor, |
|
merge_strategy=merge_strategy, |
|
video_kernel_size=video_kernel_size, |
|
ch=ch, |
|
time_embed_dim=time_embed_dim, |
|
dropout=dropout, |
|
out_channels=out_ch, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
up=True, |
|
dtype=self.dtype, |
|
device=device, |
|
operations=operations |
|
) |
|
if resblock_updown |
|
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations) |
|
) |
|
ds //= 2 |
|
self.output_blocks.append(TimestepEmbedSequential(*layers)) |
|
self._feature_size += ch |
|
|
|
self.out = nn.Sequential( |
|
operations.GroupNorm(32, ch, dtype=self.dtype, device=device), |
|
nn.SiLU(), |
|
zero_module(operations.conv_nd(dims, model_channels, out_channels, 3, padding=1, dtype=self.dtype, device=device)), |
|
) |
|
if self.predict_codebook_ids: |
|
self.id_predictor = nn.Sequential( |
|
operations.GroupNorm(32, ch, dtype=self.dtype, device=device), |
|
operations.conv_nd(dims, model_channels, n_embed, 1, dtype=self.dtype, device=device), |
|
|
|
) |
|
|
|
def forward(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs): |
|
""" |
|
Apply the model to an input batch. |
|
:param x: an [N x C x ...] Tensor of inputs. |
|
:param timesteps: a 1-D batch of timesteps. |
|
:param context: conditioning plugged in via crossattn |
|
:param y: an [N] Tensor of labels, if class-conditional. |
|
:return: an [N x C x ...] Tensor of outputs. |
|
""" |
|
transformer_options["original_shape"] = list(x.shape) |
|
transformer_options["transformer_index"] = 0 |
|
transformer_patches = transformer_options.get("patches", {}) |
|
|
|
num_video_frames = kwargs.get("num_video_frames", self.default_num_video_frames) |
|
image_only_indicator = kwargs.get("image_only_indicator", self.default_image_only_indicator) |
|
time_context = kwargs.get("time_context", None) |
|
|
|
assert (y is not None) == ( |
|
self.num_classes is not None |
|
), "must specify y if and only if the model is class-conditional" |
|
hs = [] |
|
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype) |
|
emb = self.time_embed(t_emb) |
|
|
|
if self.num_classes is not None: |
|
assert y.shape[0] == x.shape[0] |
|
emb = emb + self.label_emb(y) |
|
|
|
h = x |
|
for id, module in enumerate(self.input_blocks): |
|
transformer_options["block"] = ("input", id) |
|
h = forward_timestep_embed(module, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator) |
|
h = apply_control(h, control, 'input') |
|
if "input_block_patch" in transformer_patches: |
|
patch = transformer_patches["input_block_patch"] |
|
for p in patch: |
|
h = p(h, transformer_options) |
|
|
|
hs.append(h) |
|
if "input_block_patch_after_skip" in transformer_patches: |
|
patch = transformer_patches["input_block_patch_after_skip"] |
|
for p in patch: |
|
h = p(h, transformer_options) |
|
|
|
transformer_options["block"] = ("middle", 0) |
|
h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator) |
|
h = apply_control(h, control, 'middle') |
|
|
|
|
|
for id, module in enumerate(self.output_blocks): |
|
transformer_options["block"] = ("output", id) |
|
hsp = hs.pop() |
|
hsp = apply_control(hsp, control, 'output') |
|
|
|
if "output_block_patch" in transformer_patches: |
|
patch = transformer_patches["output_block_patch"] |
|
for p in patch: |
|
h, hsp = p(h, hsp, transformer_options) |
|
|
|
h = th.cat([h, hsp], dim=1) |
|
del hsp |
|
if len(hs) > 0: |
|
output_shape = hs[-1].shape |
|
else: |
|
output_shape = None |
|
h = forward_timestep_embed(module, h, emb, context, transformer_options, output_shape, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator) |
|
h = h.type(x.dtype) |
|
if self.predict_codebook_ids: |
|
return self.id_predictor(h) |
|
else: |
|
return self.out(h) |
|
|