File size: 14,117 Bytes
3e88ed5 2df9438 148e94d 08ed93f 755718a 3e88ed5 148e94d 3e88ed5 148e94d 3e88ed5 755718a 3e88ed5 f5d1536 755718a f5d1536 443e6f8 6851341 f5d1536 3e88ed5 f5d1536 3e88ed5 f520143 3e88ed5 f520143 3e88ed5 f5d1536 3e88ed5 f520143 3e88ed5 755718a 3e88ed5 f520143 755718a f5d1536 3e88ed5 f520143 3e88ed5 f520143 3e88ed5 d15c1bd 3e88ed5 f520143 3e88ed5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
from __future__ import unicode_literals
import os
import re
import unicodedata
import torch
from torch import nn
import streamlit as st
import pandas as pd
import pyarrow as pa
import pyarrow.parquet as pq
import numpy as np
import scipy.spatial
import pyminizip
import transformers
from transformers import BertJapaneseTokenizer, BertModel
from huggingface_hub import hf_hub_download, snapshot_download
# from PIL import Image
def unicode_normalize(cls, s):
pt = re.compile("([{}]+)".format(cls))
def norm(c):
return unicodedata.normalize("NFKC", c) if pt.match(c) else c
s = "".join(norm(x) for x in re.split(pt, s))
s = re.sub("-", "-", s)
return s
def remove_extra_spaces(s):
s = re.sub("[ ]+", " ", s)
blocks = "".join(
(
"\u4E00-\u9FFF", # CJK UNIFIED IDEOGRAPHS
"\u3040-\u309F", # HIRAGANA
"\u30A0-\u30FF", # KATAKANA
"\u3000-\u303F", # CJK SYMBOLS AND PUNCTUATION
"\uFF00-\uFFEF", # HALFWIDTH AND FULLWIDTH FORMS
)
)
basic_latin = "\u0000-\u007F"
def remove_space_between(cls1, cls2, s):
p = re.compile("([{}]) ([{}])".format(cls1, cls2))
while p.search(s):
s = p.sub(r"\1\2", s)
return s
s = remove_space_between(blocks, blocks, s)
s = remove_space_between(blocks, basic_latin, s)
s = remove_space_between(basic_latin, blocks, s)
return s
def normalize_neologd(s):
s = s.strip()
s = unicode_normalize("0-9A-Za-z。-゚", s)
def maketrans(f, t):
return {ord(x): ord(y) for x, y in zip(f, t)}
s = re.sub("[˗֊‐‑‒–⁃⁻₋−]+", "-", s) # normalize hyphens
s = re.sub("[﹣-ー—―─━ー]+", "ー", s) # normalize choonpus
s = re.sub("[~∼∾〜〰~]+", "〜", s) # normalize tildes (modified by Isao Sonobe)
s = s.translate(
maketrans(
"!\"#$%&'()*+,-./:;<=>?@[¥]^_`{|}~。、・「」",
"!”#$%&’()*+,-./:;<=>?@[¥]^_`{|}〜。、・「」",
)
)
s = remove_extra_spaces(s)
s = unicode_normalize("!”#$%&’()*+,-./:;<>?@[¥]^_`{|}〜", s) # keep =,・,「,」
s = re.sub("[’]", "'", s)
s = re.sub("[”]", '"', s)
s = s.lower()
return s
def normalize_text(text):
return normalize_neologd(text)
class ClipTextModel(nn.Module):
def __init__(self, model_name_or_path, device=None):
super(ClipTextModel, self).__init__()
if os.path.exists(model_name_or_path):
# load from file system
output_linear_state_dict = torch.load(os.path.join(model_name_or_path, "output_linear.bin"))
else:
# download from the Hugging Face model hub
filename = hf_hub_download(repo_id=model_name_or_path, filename="output_linear.bin")
output_linear_state_dict = torch.load(filename)
self.model = BertModel.from_pretrained(model_name_or_path)
config = self.model.config
self.max_cls_depth = 6
sentence_vector_size = output_linear_state_dict["bias"].shape[0]
self.sentence_vector_size = sentence_vector_size
self.output_linear = nn.Linear(self.max_cls_depth * config.hidden_size, sentence_vector_size)
# self.output_linear = nn.Linear(3 * config.hidden_size, sentence_vector_size)
self.output_linear.load_state_dict(output_linear_state_dict)
self.tokenizer = BertJapaneseTokenizer.from_pretrained(model_name_or_path, do_lower_case=True)
self.eval()
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
self.device = torch.device(device)
self.to(self.device)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
):
output_states = self.model(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=True,
return_dict=True,
)
token_embeddings = output_states[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
hidden_states = output_states["hidden_states"]
output_vectors = []
for i in range(1, self.max_cls_depth + 1):
cls_token = hidden_states[-1 * i][:, 0]
output_vectors.append(cls_token)
output_vector = torch.cat(output_vectors, dim=1)
logits = self.output_linear(output_vector)
output = (logits,) + output_states[2:]
return output
@torch.no_grad()
def encode_text(self, texts, batch_size=8, max_length=64):
self.eval()
all_embeddings = []
iterator = range(0, len(texts), batch_size)
for batch_idx in iterator:
batch = texts[batch_idx:batch_idx + batch_size]
encoded_input = self.tokenizer.batch_encode_plus(
batch, max_length=max_length, padding="longest",
truncation=True, return_tensors="pt").to(self.device)
model_output = self(**encoded_input)
text_embeddings = model_output[0].cpu()
all_embeddings.extend(text_embeddings)
# return torch.stack(all_embeddings).numpy()
return torch.stack(all_embeddings)
def save(self, output_dir):
self.model.save_pretrained(output_dir)
self.tokenizer.save_pretrained(output_dir)
torch.save(self.output_linear.state_dict(), os.path.join(output_dir, "output_linear.bin"))
# class ClipVisionModel(nn.Module):
# def __init__(self, model_name_or_path, device=None):
# super(ClipVisionModel, self).__init__()
# if os.path.exists(model_name_or_path):
# # load from file system
# visual_projection_state_dict = torch.load(os.path.join(model_name_or_path, "visual_projection.bin"))
# else:
# # download from the Hugging Face model hub
# filename = hf_hub_download(repo_id=model_name_or_path, filename="visual_projection.bin")
# visual_projection_state_dict = torch.load(filename)
# self.model = transformers.CLIPVisionModel.from_pretrained(model_name_or_path)
# config = self.model.config
# self.feature_extractor = transformers.CLIPFeatureExtractor.from_pretrained(model_name_or_path)
# vision_embed_dim = config.hidden_size
# projection_dim = 512
# self.visual_projection = nn.Linear(vision_embed_dim, projection_dim, bias=False)
# self.visual_projection.load_state_dict(visual_projection_state_dict)
# self.eval()
# if device is None:
# device = "cuda" if torch.cuda.is_available() else "cpu"
# self.device = torch.device(device)
# self.to(self.device)
# def forward(
# self,
# pixel_values=None,
# output_attentions=None,
# output_hidden_states=None,
# return_dict=None,
# ):
# output_states = self.model(
# pixel_values=pixel_values,
# output_attentions=output_attentions,
# output_hidden_states=output_hidden_states,
# return_dict=return_dict,
# )
# image_embeds = self.visual_projection(output_states[1])
# return image_embeds
# @torch.no_grad()
# def encode_image(self, images, batch_size=8):
# self.eval()
# all_embeddings = []
# iterator = range(0, len(images), batch_size)
# for batch_idx in iterator:
# batch = images[batch_idx:batch_idx + batch_size]
# encoded_input = self.feature_extractor(batch, return_tensors="pt").to(self.device)
# model_output = self(**encoded_input)
# image_embeddings = model_output.cpu()
# all_embeddings.extend(image_embeddings)
# # return torch.stack(all_embeddings).numpy()
# return torch.stack(all_embeddings)
# @staticmethod
# def remove_alpha_channel(image):
# image.convert("RGBA")
# alpha = image.convert('RGBA').split()[-1]
# background = Image.new("RGBA", image.size, (255, 255, 255))
# background.paste(image, mask=alpha)
# image = background.convert("RGB")
# return image
# def save(self, output_dir):
# self.model.save_pretrained(output_dir)
# self.feature_extractor.save_pretrained(output_dir)
# torch.save(self.visual_projection.state_dict(), os.path.join(output_dir, "visual_projection.bin"))
# class ClipModel(nn.Module):
# def __init__(self, model_name_or_path, device=None):
# super(ClipModel, self).__init__()
# if os.path.exists(model_name_or_path):
# # load from file system
# repo_dir = model_name_or_path
# else:
# # download from the Hugging Face model hub
# repo_dir = snapshot_download(model_name_or_path)
# self.text_model = ClipTextModel(repo_dir, device=device)
# self.vision_model = ClipVisionModel(os.path.join(repo_dir, "vision_model"), device=device)
# with torch.no_grad():
# logit_scale = nn.Parameter(torch.ones([]) * 2.6592)
# logit_scale.set_(torch.load(os.path.join(repo_dir, "logit_scale.bin")).clone().cpu())
# self.logit_scale = logit_scale
# self.eval()
# if device is None:
# device = "cuda" if torch.cuda.is_available() else "cpu"
# self.device = torch.device(device)
# self.to(self.device)
# def forward(self, pixel_values, input_ids, attention_mask, token_type_ids):
# image_features = self.vision_model(pixel_values=pixel_values)
# text_features = self.text_model(input_ids=input_ids,
# attention_mask=attention_mask,
# token_type_ids=token_type_ids)[0]
# image_features = image_features / image_features.norm(dim=-1, keepdim=True)
# text_features = text_features / text_features.norm(dim=-1, keepdim=True)
# logit_scale = self.logit_scale.exp()
# logits_per_image = logit_scale * image_features @ text_features.t()
# logits_per_text = logits_per_image.t()
# return logits_per_image, logits_per_text
# def save(self, output_dir):
# torch.save(self.logit_scale, os.path.join(output_dir, "logit_scale.bin"))
# self.text_model.save(output_dir)
# self.vision_model.save(os.path.join(output_dir, "vision_model"))
class DummyClipModel:
def __init__(self, text_model):
self.text_model = text_model
def encode_text(text, model):
text = normalize_text(text)
text_embedding = model.text_model.encode_text([text]).numpy()
return text_embedding
# def encode_image(image_filename, model):
# image = Image.open(image_filename)
# image_embedding = model.vision_model.encode_image([image]).numpy()
# return image_embedding
st.title("いらすと検索(日本語CLIPゼロショット)")
description_text = st.empty()
if "model" not in st.session_state:
description_text.text("日本語CLIPモデル読み込み中... ")
device = "cuda" if torch.cuda.is_available() else "cpu"
text_model = ClipTextModel("sonoisa/clip-vit-b-32-japanese-v1", device=device)
# model = ClipModel("sonoisa/clip-vit-b-32-japanese-v1", device=device)
model = DummyClipModel(text_model)
st.session_state.model = model
print("extract dataset")
pyminizip.uncompress(
"clip_zeroshot_irasuto_image_items_20210224.pq.zip", st.secrets["ZIP_PASSWORD"], None, 1
)
print("loading dataset")
df = pq.read_table("clip_zeroshot_irasuto_image_items_20210224.parquet",
columns=["page", "description", "image_url", "image_vector"]).to_pandas()
st.session_state.df = df
# sentence_vectors = np.stack(df["sentence_vector"])
image_vectors = np.stack(df["image_vector"])
# st.session_state.sentence_vectors = sentence_vectors
st.session_state.image_vectors = image_vectors
print("finished loading model and dataset")
model = st.session_state.model
df = st.session_state.df
# sentence_vectors = st.session_state.sentence_vectors
image_vectors = st.session_state.image_vectors
description_text.text("日本語CLIPモデル(ゼロショット)を用いて、説明文の意味が近い「いらすとや」画像を検索します。\nキーワードを列挙するよりも、自然な文章を入力した方が精度よく検索できます。\n画像は必ずリンク先の「いらすとや」さんのページを開き、そこからダウンロードしてください。")
def clear_result():
result_text.text("")
prev_query = ""
query_input = st.text_input(label="説明文", value="", on_change=clear_result)
closest_n = st.number_input(label="検索数", min_value=1, value=10, max_value=100)
search_buttion = st.button("検索")
result_text = st.empty()
if search_buttion or prev_query != query_input:
prev_query = query_input
query_embedding = encode_text(query_input, model)
distances = scipy.spatial.distance.cdist(
query_embedding, image_vectors, metric="cosine"
)[0]
results = zip(range(len(distances)), distances)
results = sorted(results, key=lambda x: x[1])
md_content = ""
for i, (idx, distance) in enumerate(results[0:closest_n]):
page_url = df.iloc[idx]["page"]
desc = df.iloc[idx]["description"]
img_url = df.iloc[idx]["image_url"]
md_content += f"1. <div><a href='{page_url}' target='_blank' rel='noopener noreferrer'><img src='{img_url}' width='100'>{distance / 2:.4f}: {desc}</a><div>\n"
result_text.markdown(md_content, unsafe_allow_html=True)
|