Spaces:
Runtime error
Runtime error
import ast | |
import os | |
import requests | |
from PIL import Image | |
import streamlit as st | |
import io | |
api = "https://23d4-188-130-155-153.ngrok-free.app" | |
st.set_page_config(layout="wide") | |
st.title("Stamp2vec π") | |
input_image = st.file_uploader("insert image") | |
if(input_image): | |
image = Image.open(input_image) | |
st.header("Original") | |
st.image(input_image, width = 700) | |
detection_model = st.selectbox("Select detection model", ("YOLO-stamp", )) | |
embedding_model = st.selectbox("Select embedding model", ("vits8", )) | |
if st.button("Get prediction"): | |
with st.spinner("Loading..."): | |
response = requests.post(os.path.join(api, f"bounding-boxes-{detection_model}/"), | |
files = {"file": input_image.getvalue(), "model_id": detection_model}) | |
prediction = ast.literal_eval(response.text) | |
response = requests.post(os.path.join(api, f"image-w-boxes-{detection_model}/"), | |
files = {"file": input_image.getvalue(), "model_id": detection_model}) | |
image_with_boxes = response.content | |
arr = [] | |
for b in prediction["bboxes"]: | |
stamp = image.crop((b["xmin"], b["ymin"], b["xmin"] + b["width"], b["ymin"] + b["height"])) | |
output = io.BytesIO() | |
stamp.save(output, format="BMP") | |
response = ast.literal_eval(requests.post(os.path.join(api, f"embeddings-from-cropped-{embedding_model}/"), | |
files = {"file": output.getvalue(), "model_id": embedding_model}).text) | |
arr.extend(response["embedding"]) | |
col1, col2, col3 = st.columns(3) | |
col1.subheader("Prediction") | |
col1.write(prediction) | |
col2.subheader("Image") | |
col2.image(image_with_boxes, use_column_width=True) | |
col3.subheader("Embeddings") | |
col3.write(arr) |