suayptalha commited on
Commit
b11f420
·
verified ·
1 Parent(s): 62d3eaa

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -63
app.py CHANGED
@@ -1,15 +1,10 @@
1
  import gradio as gr
2
  from gradio_client import Client, handle_file
3
  from huggingface_hub import InferenceClient
4
- from PIL import Image
5
- from threading import Thread
6
- import time
7
 
8
- # Initialize clients for Moondream and QwQ
9
  moondream_client = Client("vikhyatk/moondream2")
10
  qwq_client = InferenceClient("Qwen/QwQ-32B-Preview")
11
 
12
- # Function to describe the image using Moondream API
13
  def describe_image(image, user_message):
14
  result = moondream_client.predict(
15
  img=handle_file(image),
@@ -18,9 +13,9 @@ def describe_image(image, user_message):
18
  )
19
 
20
  description = result
 
21
  user_message = description + "\n" + user_message
22
 
23
- # Using QwQ model for conversation after description
24
  qwq_result = qwq_client.chat_completion(
25
  messages=[{"role": "user", "content": user_message}],
26
  max_tokens=512,
@@ -30,61 +25,18 @@ def describe_image(image, user_message):
30
 
31
  return qwq_result['choices'][0]['message']['content']
32
 
33
- # Function to handle chat or image-based conversation
34
- def chat_or_image(message, history, max_new_tokens=250):
35
- txt = message["text"]
36
- ext_buffer = f"{txt}"
37
-
38
- messages = []
39
- images = []
40
-
41
- # Process the conversation history
42
- for i, msg in enumerate(history):
43
- if isinstance(msg[0], tuple):
44
- messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]})
45
- messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
46
- images.append(Image.open(msg[0][0]).convert("RGB"))
47
- elif isinstance(msg[0], str) and isinstance(history[i-1][0], str): # text only turn
48
- messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
49
- messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
50
-
51
- # Add current message
52
- if len(message["files"]) == 1:
53
- if isinstance(message["files"][0], str): # Example images
54
- image = Image.open(message["files"][0]).convert("RGB")
55
- else: # Regular image input
56
- image = Image.open(message["files"][0]["path"]).convert("RGB")
57
- images.append(image)
58
- messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]})
59
  else:
60
- messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})
61
-
62
- # Processing the conversation to send to the model
63
- texts = moondream_client.apply_chat_template(messages, add_generation_prompt=True)
64
-
65
- if images == []:
66
- inputs = moondream_client(text=texts, return_tensors="pt").to("cuda")
67
- else:
68
- inputs = moondream_client(text=texts, images=images, return_tensors="pt").to("cuda")
69
-
70
- streamer = TextIteratorStreamer(moondream_client, skip_special_tokens=True, skip_prompt=True)
71
-
72
- generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
73
- generated_text = ""
74
-
75
- # Generating the response with threading to avoid blocking
76
- thread = Thread(target=qwq_client.chat_completion, kwargs=generation_kwargs)
77
- thread.start()
78
- buffer = ""
79
-
80
- # Stream the generated text
81
- for new_text in streamer:
82
- buffer += new_text
83
- generated_text_without_prompt = buffer
84
- time.sleep(0.01)
85
- yield buffer
86
 
87
- # Gradio Interface setup
88
  demo = gr.Interface(
89
  fn=chat_or_image,
90
  inputs=[
@@ -92,10 +44,7 @@ demo = gr.Interface(
92
  gr.Textbox(label="Ask anything", placeholder="Ask...", lines=2)
93
  ],
94
  outputs="text",
95
- title="Multimodal Llama Chatbot",
96
- description="Interact with the Llama chatbot. Upload an image, ask a question, or both!",
97
- live=True
98
  )
99
 
100
  if __name__ == "__main__":
101
- demo.launch(show_error=True)
 
1
  import gradio as gr
2
  from gradio_client import Client, handle_file
3
  from huggingface_hub import InferenceClient
 
 
 
4
 
 
5
  moondream_client = Client("vikhyatk/moondream2")
6
  qwq_client = InferenceClient("Qwen/QwQ-32B-Preview")
7
 
 
8
  def describe_image(image, user_message):
9
  result = moondream_client.predict(
10
  img=handle_file(image),
 
13
  )
14
 
15
  description = result
16
+
17
  user_message = description + "\n" + user_message
18
 
 
19
  qwq_result = qwq_client.chat_completion(
20
  messages=[{"role": "user", "content": user_message}],
21
  max_tokens=512,
 
25
 
26
  return qwq_result['choices'][0]['message']['content']
27
 
28
+ def chat_or_image(image, user_message):
29
+ if image:
30
+ return describe_image(image, user_message)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
  else:
32
+ qwq_result = qwq_client.chat_completion(
33
+ messages=[{"role": "user", "content": user_message}],
34
+ max_tokens=512,
35
+ temperature=0.7,
36
+ top_p=0.95
37
+ )
38
+ return qwq_result['choices'][0]['message']['content']
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
 
 
40
  demo = gr.Interface(
41
  fn=chat_or_image,
42
  inputs=[
 
44
  gr.Textbox(label="Ask anything", placeholder="Ask...", lines=2)
45
  ],
46
  outputs="text",
 
 
 
47
  )
48
 
49
  if __name__ == "__main__":
50
+ demo.launch(show_error=True)