Paras Shah
Beautification and add info
5c11e48
raw
history blame
9.83 kB
import gc
import laspy
import torch
import tempfile
import numpy as np
import open3d as o3d
import streamlit as st
import plotly.graph_objs as go
import pointnet2_cls_msg as pn2
from utils import calculate_dbh, calc_canopy_volume, CLASSES
from SingleTreePointCloudLoader import SingleTreePointCloudLoader
gc.enable()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
with st.spinner("Loading PointNet++ model..."):
checkpoint = torch.load('checkpoints/best_model.pth', map_location=torch.device(device))
classifier = pn2.get_model(num_class=4, normal_channel=False)
classifier.load_state_dict(checkpoint['model_state_dict'])
classifier.eval()
st.sidebar.markdown(
body=
"<div style='text-align: justify;'>The species <strong>Pinus sylvestris "
"(Scots Pine), Fagus sylvatica (European Beech), Picea abies (Norway Spruce), "
"and Betula pendula (Silver Birch)</strong> are native to Europe and parts "
"of Asia but are also found in India (Parts of Himachal Pradesh, "
"Uttarakhand, Jammu and Kashmir, Sikkim and Arunachal Pradesh). "
"These temperate species, typically thriving in boreal and montane ecosystems, "
"are occasionally introduced in cooler Indian regions like the Himalayan "
"foothills for afforestation or experimental forestry, where climatic "
"conditions are favourable. However, their growth and ecological interactions "
"in India may vary significantly due to the region's unique biodiversity "
"and environmental factors.<br><br>"
"This AI-powered application employs the PointNet++ deep learning "
"architecture, optimized for processing 3D point cloud data from "
"individual <code>.laz</code> files (fused aerial and terrestrial LiDAR) "
"to classify tree species up to four classes (<strong>Pinus sylvestris, "
"Fagus sylvatica, Picea abies, and Betula pendula</strong>) "
"with associated confidence scores. Additionally, it calculates critical "
"metrics such as Diameter at Breast Height (DBH), actual height and "
"customizable canopy volume, enabling precise refinement of predictions "
"and analyses. By integrating species-specific and volumetric insights, "
"the tool enhances ecological research workflows, facilitating data-driven "
"decision-making.</div>"
,
unsafe_allow_html=True,
)
st.markdown(
"""
<style>
[data-testid="stSidebar"] {
background-image: url("static/sidebar.png");
background-size: cover;
background-position: center;
}
</style>
""",
unsafe_allow_html=True
)
st.header("ArborSphere")
st.subheader("Tree Identity and Biometrics")
uploaded_file = st.file_uploader(
label="Upload Point Cloud Data",
type=['laz', 'las', 'pcd'],
help="Please upload trees with ground points removed"
)
col1, col2 = st.columns([2, 2])
with col1:
st.image("static/canopy_info.jpg")
with col2:
CANOPY_VOLUME = st.slider(
label="Canopy Volume in % (Z)",
min_value=10,
max_value=90,
value=70,
step=1,
help=
"Adjust the Z-threshold value to calculate the canopy volume "
"within specified limits, it uses Quickhull and DBSCAN algorithms. "
"The Quickhull algorithm computes the convex hull of a set of points "
"by identifying extreme points to form an initial boundary and recursively "
"refining it by adding the farthest points until all points lie within the "
"convex boundary. It uses a divide-and-conquer approach, similar to QuickSort. "
"DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a "
"density-based clustering algorithm that groups densely packed points within "
"a specified distance 'eps' and minimum points 'minpoints', while treating "
"sparse points as noise. It effectively identifies arbitrarily shaped clusters "
"and handles outliers, making it suitable for spatial data and anomaly detection."
)
col1, col2 = st.columns([2, 2])
with col1:
st.image("static/DBH_info.jpg")
with col2:
DBH_HEIGHT = st.slider(
label="DBH (Diameter above Breast Height, in metres) (H)",
min_value=1.3,
max_value=1.4,
value=1.4,
step=0.01,
help=
"Adjust to calculate the DBH value within specified limits, "
"it utilizes Least square circle fitting method Levenberg-Marquardt "
"optimization technique."
"The Least Squares Circle Fitting method is used to find the "
"best-fitting circle to a set of 2D points by minimizing the sum of "
"squared distances between each point and the circle's circumference."
"Levenberg-Marquardt Optimization is used to fit models (like circles) "
"to point cloud data by minimizing the error between the model and the "
"actual points."
)
proceed = None
if uploaded_file:
try:
with st.spinner("Reading point cloud file..."):
file_type = uploaded_file.name.split('.')[-1].lower()
with tempfile.NamedTemporaryFile(delete=False, suffix=f".{uploaded_file.name.split('.')[-1]}") as tmp:
tmp.write(uploaded_file.read())
temp_file_path = tmp.name
if file_type == 'pcd':
pcd = o3d.io.read_point_cloud(temp_file_path)
points = np.asarray(pcd.points)
else:
point_cloud = laspy.read(temp_file_path)
points = np.vstack((point_cloud.x, point_cloud.y, point_cloud.z)).transpose()
proceed = st.button("Run model")
except Exception as e:
st.error(f"An error occured: {str(e)}")
if proceed:
try:
with st.spinner("Calculating tree inventory..."):
dbh, trunk_points = calculate_dbh(points, DBH_HEIGHT)
z_min = np.min(points[:, 2])
z_max = np.max(points[:, 2])
height = z_max - z_min
canopy_volume, canopy_points = calc_canopy_volume(points, CANOPY_VOLUME, height, z_min)
with st.spinner("Visualizing point cloud..."):
fig = go.Figure()
fig.add_trace(go.Scatter3d(
x=points[:, 0],
y=points[:, 1],
z=points[:, 2],
mode='markers',
marker=dict(
size=0.5,
color=points[:, 2],
colorscale='Viridis',
opacity=1.0,
),
name='Tree'
))
fig.add_trace(go.Scatter3d(
x=canopy_points[:, 0],
y=canopy_points[:, 1],
z=canopy_points[:, 2],
mode='markers',
marker=dict(
size=2,
color='blue',
opacity=0.8,
),
name='Canopy points'
))
fig.add_trace(go.Scatter3d(
x=trunk_points[:, 0],
y=trunk_points[:, 1],
z=trunk_points[:, 2],
mode='markers',
marker=dict(
size=2,
color='red',
opacity=0.9,
),
name='DBH'
))
fig.update_layout(
margin=dict(l=0, r=0, b=0, t=0),
scene=dict(
xaxis_title="X",
yaxis_title="Y",
zaxis_title="Z",
aspectmode='data'
),
showlegend=False
)
col1, col2, col3 = st.columns([1, 3, 1])
with col2:
st.markdown("""
<style>
.centered-plot {
text-align: center;
}
</style>
""", unsafe_allow_html=True)
st.plotly_chart(fig, use_container_width=True)
hide_st_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
header {visibility: hidden;}
</style>
"""
st.markdown(hide_st_style, unsafe_allow_html=True)
with st.spinner("Running inference..."):
testFile = SingleTreePointCloudLoader(temp_file_path, file_type)
testFileLoader = torch.utils.data.DataLoader(testFile, batch_size=8, shuffle=False, num_workers=0)
point_set, _ = next(iter(testFileLoader))
point_set = point_set.transpose(2, 1)
with torch.no_grad():
logits, _ = classifier(point_set)
probabilities = torch.softmax(logits, dim=-1)
predicted_class = torch.argmax(probabilities, dim=-1).item()
confidence_score = (probabilities.numpy().tolist())[0][predicted_class] * 100
predicted_label = CLASSES[predicted_class]
st.write(f"**Predicted class: {predicted_label}**")
# st.write(f"Class Probabilities: {probabilities.numpy().tolist()}")
st.write(f"**Confidence score: {confidence_score:.2f}%**")
st.write(f"**Height of tree: {height:.2f}m**")
st.write(f"**Canopy volume: {canopy_volume:.2f}m\u00b3**")
st.write(f"**DBH: {dbh:.2f}m**")
except Exception as e:
st.error(f"An error occured: {str(e)}")