Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,24 +4,25 @@ import numpy as np
|
|
4 |
import faiss
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
from sentence_transformers import SentenceTransformer
|
7 |
-
import fitz # PyMuPDF for
|
8 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
9 |
|
10 |
-
|
11 |
# Configuration
|
12 |
MODEL_NAME = "ibm-granite/granite-3.1-1b-a400m-instruct"
|
|
|
|
|
|
|
13 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
|
15 |
@st.cache_resource
|
16 |
-
def
|
17 |
try:
|
18 |
-
# Load with
|
19 |
tokenizer = AutoTokenizer.from_pretrained(
|
20 |
MODEL_NAME,
|
21 |
trust_remote_code=True,
|
22 |
revision="main"
|
23 |
)
|
24 |
-
|
25 |
model = AutoModelForCausalLM.from_pretrained(
|
26 |
MODEL_NAME,
|
27 |
device_map="auto" if DEVICE == "cuda" else None,
|
@@ -29,26 +30,9 @@ def load_model():
|
|
29 |
trust_remote_code=True,
|
30 |
revision="main",
|
31 |
low_cpu_mem_usage=True
|
32 |
-
)
|
33 |
-
return model, tokenizer
|
34 |
-
except Exception as e:
|
35 |
-
st.error(f"Model loading failed: {str(e)}")
|
36 |
-
st.stop()
|
37 |
-
|
38 |
-
model, tokenizer = load_model()
|
39 |
-
|
40 |
-
|
41 |
-
def load_models():
|
42 |
-
try:
|
43 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
44 |
-
|
45 |
-
model = AutoModelForCausalLM.from_pretrained(
|
46 |
-
MODEL_NAME,
|
47 |
-
device_map="auto" if DEVICE == "cuda" else None,
|
48 |
-
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
|
49 |
-
low_cpu_mem_usage=True
|
50 |
).eval()
|
51 |
|
|
|
52 |
embedder = SentenceTransformer(EMBED_MODEL, device=DEVICE)
|
53 |
return tokenizer, model, embedder
|
54 |
|
@@ -58,7 +42,7 @@ def load_models():
|
|
58 |
|
59 |
tokenizer, model, embedder = load_models()
|
60 |
|
61 |
-
# Improved text processing
|
62 |
def process_text(text):
|
63 |
splitter = RecursiveCharacterTextSplitter(
|
64 |
chunk_size=CHUNK_SIZE,
|
@@ -67,7 +51,7 @@ def process_text(text):
|
|
67 |
)
|
68 |
return splitter.split_text(text)
|
69 |
|
70 |
-
# Enhanced PDF extraction
|
71 |
def extract_pdf_text(uploaded_file):
|
72 |
try:
|
73 |
doc = fitz.open(stream=uploaded_file.read(), filetype="pdf")
|
@@ -83,28 +67,29 @@ def generate_summary(text):
|
|
83 |
|
84 |
for chunk in chunks:
|
85 |
prompt = f"""<|user|>
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
inputs = tokenizer(prompt, return_tensors="pt").to(DEVICE)
|
92 |
outputs = model.generate(**inputs, max_new_tokens=300, temperature=0.3)
|
93 |
-
|
|
|
94 |
|
95 |
-
# Combine summaries
|
96 |
combined = "\n".join(summaries)
|
97 |
final_prompt = f"""<|user|>
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
|
103 |
inputs = tokenizer(final_prompt, return_tensors="pt").to(DEVICE)
|
104 |
outputs = model.generate(**inputs, max_new_tokens=500, temperature=0.5)
|
105 |
-
|
|
|
106 |
|
107 |
-
# Enhanced retrieval system
|
108 |
def build_faiss_index(texts):
|
109 |
embeddings = embedder.encode(texts, show_progress_bar=True)
|
110 |
dimension = embeddings.shape[1]
|
@@ -113,15 +98,14 @@ def build_faiss_index(texts):
|
|
113 |
index.add(embeddings)
|
114 |
return index
|
115 |
|
116 |
-
# Context-aware generation
|
117 |
def generate_answer(query, context):
|
118 |
prompt = f"""<|user|>
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
inputs = tokenizer(prompt, return_tensors="pt", max_length=1024, truncation=True).to(DEVICE)
|
126 |
outputs = model.generate(
|
127 |
**inputs,
|
@@ -131,12 +115,14 @@ def generate_answer(query, context):
|
|
131 |
repetition_penalty=1.2,
|
132 |
do_sample=True
|
133 |
)
|
134 |
-
|
|
|
135 |
|
136 |
-
# Streamlit UI
|
137 |
st.set_page_config(page_title="π Smart Book Analyst", layout="wide")
|
138 |
st.title("π AI-Powered Book Analysis System")
|
139 |
|
|
|
140 |
uploaded_file = st.file_uploader("Upload book (PDF or TXT)", type=["pdf", "txt"])
|
141 |
|
142 |
if uploaded_file:
|
@@ -158,7 +144,8 @@ if uploaded_file:
|
|
158 |
except Exception as e:
|
159 |
st.error(f"Processing failed: {str(e)}")
|
160 |
|
161 |
-
|
|
|
162 |
query = st.text_input("Ask about the book:")
|
163 |
if query:
|
164 |
with st.spinner("π Searching for answers..."):
|
@@ -176,4 +163,4 @@ if st.session_state.index:
|
|
176 |
st.caption("Retrieved context confidence: {:.2f}".format(distances[0][0]))
|
177 |
|
178 |
except Exception as e:
|
179 |
-
st.error(f"Query failed: {str(e)}")
|
|
|
4 |
import faiss
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
from sentence_transformers import SentenceTransformer
|
7 |
+
import fitz # PyMuPDF for PDF extraction
|
8 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
9 |
|
|
|
10 |
# Configuration
|
11 |
MODEL_NAME = "ibm-granite/granite-3.1-1b-a400m-instruct"
|
12 |
+
EMBED_MODEL = "sentence-transformers/all-mpnet-base-v2"
|
13 |
+
CHUNK_SIZE = 512
|
14 |
+
CHUNK_OVERLAP = 64
|
15 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
|
17 |
@st.cache_resource
|
18 |
+
def load_models():
|
19 |
try:
|
20 |
+
# Load tokenizer and generative model with trust_remote_code enabled
|
21 |
tokenizer = AutoTokenizer.from_pretrained(
|
22 |
MODEL_NAME,
|
23 |
trust_remote_code=True,
|
24 |
revision="main"
|
25 |
)
|
|
|
26 |
model = AutoModelForCausalLM.from_pretrained(
|
27 |
MODEL_NAME,
|
28 |
device_map="auto" if DEVICE == "cuda" else None,
|
|
|
30 |
trust_remote_code=True,
|
31 |
revision="main",
|
32 |
low_cpu_mem_usage=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
).eval()
|
34 |
|
35 |
+
# Load embedding model for FAISS
|
36 |
embedder = SentenceTransformer(EMBED_MODEL, device=DEVICE)
|
37 |
return tokenizer, model, embedder
|
38 |
|
|
|
42 |
|
43 |
tokenizer, model, embedder = load_models()
|
44 |
|
45 |
+
# Improved text processing: splits text into chunks
|
46 |
def process_text(text):
|
47 |
splitter = RecursiveCharacterTextSplitter(
|
48 |
chunk_size=CHUNK_SIZE,
|
|
|
51 |
)
|
52 |
return splitter.split_text(text)
|
53 |
|
54 |
+
# Enhanced PDF extraction using PyMuPDF
|
55 |
def extract_pdf_text(uploaded_file):
|
56 |
try:
|
57 |
doc = fitz.open(stream=uploaded_file.read(), filetype="pdf")
|
|
|
67 |
|
68 |
for chunk in chunks:
|
69 |
prompt = f"""<|user|>
|
70 |
+
Summarize this text section focusing on key themes, characters, and plot points:
|
71 |
+
{chunk[:2000]}
|
72 |
+
<|assistant|>
|
73 |
+
"""
|
|
|
74 |
inputs = tokenizer(prompt, return_tensors="pt").to(DEVICE)
|
75 |
outputs = model.generate(**inputs, max_new_tokens=300, temperature=0.3)
|
76 |
+
summary_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
77 |
+
summaries.append(summary_text)
|
78 |
|
79 |
+
# Combine individual summaries into one comprehensive summary
|
80 |
combined = "\n".join(summaries)
|
81 |
final_prompt = f"""<|user|>
|
82 |
+
Combine these section summaries into a coherent book summary:
|
83 |
+
{combined}
|
84 |
+
<|assistant|>
|
85 |
+
The comprehensive summary is:"""
|
86 |
|
87 |
inputs = tokenizer(final_prompt, return_tensors="pt").to(DEVICE)
|
88 |
outputs = model.generate(**inputs, max_new_tokens=500, temperature=0.5)
|
89 |
+
full_summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
90 |
+
return full_summary.split(":")[-1].strip()
|
91 |
|
92 |
+
# Enhanced retrieval system using FAISS
|
93 |
def build_faiss_index(texts):
|
94 |
embeddings = embedder.encode(texts, show_progress_bar=True)
|
95 |
dimension = embeddings.shape[1]
|
|
|
98 |
index.add(embeddings)
|
99 |
return index
|
100 |
|
101 |
+
# Context-aware answer generation
|
102 |
def generate_answer(query, context):
|
103 |
prompt = f"""<|user|>
|
104 |
+
Using this context: {context}
|
105 |
+
Answer the question precisely and truthfully. If unsure, say "I don't know".
|
106 |
+
Question: {query}
|
107 |
+
<|assistant|>
|
108 |
+
"""
|
|
|
109 |
inputs = tokenizer(prompt, return_tensors="pt", max_length=1024, truncation=True).to(DEVICE)
|
110 |
outputs = model.generate(
|
111 |
**inputs,
|
|
|
115 |
repetition_penalty=1.2,
|
116 |
do_sample=True
|
117 |
)
|
118 |
+
answer_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
119 |
+
return answer_text.split("<|assistant|>")[-1].strip()
|
120 |
|
121 |
+
# Streamlit UI setup
|
122 |
st.set_page_config(page_title="π Smart Book Analyst", layout="wide")
|
123 |
st.title("π AI-Powered Book Analysis System")
|
124 |
|
125 |
+
# File upload
|
126 |
uploaded_file = st.file_uploader("Upload book (PDF or TXT)", type=["pdf", "txt"])
|
127 |
|
128 |
if uploaded_file:
|
|
|
144 |
except Exception as e:
|
145 |
st.error(f"Processing failed: {str(e)}")
|
146 |
|
147 |
+
# Query interface
|
148 |
+
if "index" in st.session_state and st.session_state.index is not None:
|
149 |
query = st.text_input("Ask about the book:")
|
150 |
if query:
|
151 |
with st.spinner("π Searching for answers..."):
|
|
|
163 |
st.caption("Retrieved context confidence: {:.2f}".format(distances[0][0]))
|
164 |
|
165 |
except Exception as e:
|
166 |
+
st.error(f"Query failed: {str(e)}")
|