Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import GPT2LMHeadModel, GPT2Tokenizer | |
# Load pre-trained GPT-2 model and tokenizer | |
model_name = 'gpt2' | |
model = GPT2LMHeadModel.from_pretrained(model_name) | |
tokenizer = GPT2Tokenizer.from_pretrained(model_name) | |
# Function to generate blog post for a given topic | |
def generate_blog_post(topic, max_length=300): | |
# Encode the input topic into tokens | |
input_ids = tokenizer.encode(topic, return_tensors='pt') | |
# Generate text | |
output = model.generate( | |
input_ids, | |
max_length=max_length, | |
num_return_sequences=1, | |
no_repeat_ngram_size=2, | |
early_stopping=True | |
) | |
# Decode the output tokens into a string | |
blog_post = tokenizer.decode(output[0], skip_special_tokens=True) | |
return blog_post | |
# Streamlit app | |
st.title("Blog Post Generator") | |
topic = st.text_input("Enter a topic for the blog post:") | |
max_length = st.slider("Maximum length of the blog post:", min_value=50, max_value=1000, value=300) | |
if st.button("Generate Blog Post"): | |
if topic: | |
with st.spinner('Generating blog post...'): | |
blog_post = generate_blog_post(topic, max_length) | |
st.write(blog_post) | |
else: | |
st.warning("Please enter a topic.") | |