File size: 59,027 Bytes
2923686 9ee2570 52ebc2a 9ee2570 4b6439a 52ebc2a 008c48b 52ebc2a 9ee2570 2923686 4b6439a b7778c4 9ee2570 4b6439a 9ee2570 a43ee0a 9ee2570 4b6439a 9272174 9ee2570 008c48b 52ebc2a 008c48b 52ebc2a 008c48b 9ee2570 008c48b 9ee2570 1b11b90 9ee2570 008c48b 9ee2570 053fb4e 6fd8887 053fb4e 9ee2570 b3b3af9 9ee2570 2923686 9ee2570 b3b3af9 9ee2570 2923686 9ee2570 2923686 9ee2570 2923686 9ee2570 cf5f43b 9ee2570 cf5f43b 9ee2570 2923686 9ee2570 b7778c4 9ee2570 b7778c4 9ee2570 b7778c4 9ee2570 4b6439a 9ee2570 4b6439a 9ee2570 2923686 9ee2570 4b6439a 9ee2570 2923686 9ee2570 4b6439a 9ee2570 2923686 9ee2570 52ebc2a 9ee2570 2923686 9ee2570 52ebc2a 9ee2570 b7778c4 9ee2570 2923686 9ee2570 4b6439a 9ee2570 4b6439a 9ee2570 4b6439a 9ee2570 4b6439a 9ee2570 b7778c4 9ee2570 52ebc2a 9ee2570 b7778c4 9ee2570 4b6439a 52ebc2a 9ee2570 52ebc2a 4b6439a 52ebc2a 9ee2570 52ebc2a 9ee2570 52ebc2a 9ee2570 52ebc2a 9ee2570 52ebc2a 9ee2570 52ebc2a 9ee2570 52ebc2a 9ee2570 52ebc2a 9ee2570 52ebc2a 9ee2570 52ebc2a 9ee2570 52ebc2a 9ee2570 52ebc2a 4b6439a 9ee2570 4b6439a 9ee2570 4b6439a 9ee2570 4b6439a b7778c4 9ee2570 2923686 9ee2570 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 |
import spaces
import json
import gradio as gr
import os
import re
from pathlib import Path
from PIL import Image
import shutil
import requests
from requests.adapters import HTTPAdapter
from urllib3.util import Retry
import urllib.parse
import pandas as pd
from huggingface_hub import HfApi, HfFolder, hf_hub_download, snapshot_download
from env import (HF_LORA_PRIVATE_REPOS1, HF_LORA_PRIVATE_REPOS2,
HF_MODEL_USER_EX, HF_MODEL_USER_LIKES, DIFFUSERS_FORMAT_LORAS,
directory_loras, hf_read_token, HF_TOKEN, CIVITAI_API_KEY)
MODEL_TYPE_DICT = {
"diffusers:StableDiffusionPipeline": "SD 1.5",
"diffusers:StableDiffusionXLPipeline": "SDXL",
"diffusers:FluxPipeline": "FLUX",
}
def get_user_agent():
return 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:127.0) Gecko/20100101 Firefox/127.0'
def to_list(s):
return [x.strip() for x in s.split(",") if not s == ""]
def list_uniq(l):
return sorted(set(l), key=l.index)
def list_sub(a, b):
return [e for e in a if e not in b]
def is_repo_name(s):
return re.fullmatch(r'^[^/]+?/[^/]+?$', s)
from translatepy import Translator
translator = Translator()
def translate_to_en(input: str):
try:
output = str(translator.translate(input, 'English'))
except Exception as e:
output = input
print(e)
return output
def get_local_model_list(dir_path):
model_list = []
valid_extensions = ('.ckpt', '.pt', '.pth', '.safetensors', '.bin')
for file in Path(dir_path).glob("*"):
if file.suffix in valid_extensions:
file_path = str(Path(f"{dir_path}/{file.name}"))
model_list.append(file_path)
return model_list
def get_token():
try:
token = HfFolder.get_token()
except Exception:
token = ""
return token
def set_token(token):
try:
HfFolder.save_token(token)
except Exception:
print(f"Error: Failed to save token.")
set_token(HF_TOKEN)
def split_hf_url(url: str):
try:
s = list(re.findall(r'^(?:https?://huggingface.co/)(?:(datasets)/)?(.+?/.+?)/\w+?/.+?/(?:(.+)/)?(.+?.\w+)(?:\?download=true)?$', url)[0])
if len(s) < 4: return "", "", "", ""
repo_id = s[1]
repo_type = "dataset" if s[0] == "datasets" else "model"
subfolder = urllib.parse.unquote(s[2]) if s[2] else None
filename = urllib.parse.unquote(s[3])
return repo_id, filename, subfolder, repo_type
except Exception as e:
print(e)
def download_hf_file(directory, url, progress=gr.Progress(track_tqdm=True)):
hf_token = get_token()
repo_id, filename, subfolder, repo_type = split_hf_url(url)
try:
print(f"Downloading {url} to {directory}")
if subfolder is not None: path = hf_hub_download(repo_id=repo_id, filename=filename, subfolder=subfolder, repo_type=repo_type, local_dir=directory, token=hf_token)
else: path = hf_hub_download(repo_id=repo_id, filename=filename, repo_type=repo_type, local_dir=directory, token=hf_token)
return path
except Exception as e:
print(f"Failed to download: {e}")
return None
def download_things(directory, url, hf_token="", civitai_api_key=""):
url = url.strip()
if "drive.google.com" in url:
original_dir = os.getcwd()
os.chdir(directory)
os.system(f"gdown --fuzzy {url}")
os.chdir(original_dir)
elif "huggingface.co" in url:
url = url.replace("?download=true", "")
# url = urllib.parse.quote(url, safe=':/') # fix encoding
if "/blob/" in url:
url = url.replace("/blob/", "/resolve/")
download_hf_file(directory, url)
elif "civitai.com" in url:
if "?" in url:
url = url.split("?")[0]
if civitai_api_key:
url = url + f"?token={civitai_api_key}"
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
else:
print("\033[91mYou need an API key to download Civitai models.\033[0m")
else:
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
def get_download_file(temp_dir, url, civitai_key="", progress=gr.Progress(track_tqdm=True)):
if not "http" in url and is_repo_name(url) and not Path(url).exists():
print(f"Use HF Repo: {url}")
new_file = url
elif not "http" in url and Path(url).exists():
print(f"Use local file: {url}")
new_file = url
elif Path(f"{temp_dir}/{url.split('/')[-1]}").exists():
print(f"File to download alreday exists: {url}")
new_file = f"{temp_dir}/{url.split('/')[-1]}"
else:
print(f"Start downloading: {url}")
before = get_local_model_list(temp_dir)
try:
download_things(temp_dir, url.strip(), HF_TOKEN, civitai_key)
except Exception:
print(f"Download failed: {url}")
return ""
after = get_local_model_list(temp_dir)
new_file = list_sub(after, before)[0] if list_sub(after, before) else ""
if not new_file:
print(f"Download failed: {url}")
return ""
print(f"Download completed: {url}")
return new_file
def escape_lora_basename(basename: str):
return basename.replace(".", "_").replace(" ", "_").replace(",", "")
def to_lora_key(path: str):
return escape_lora_basename(Path(path).stem)
def to_lora_path(key: str):
if Path(key).is_file(): return key
path = Path(f"{directory_loras}/{escape_lora_basename(key)}.safetensors")
return str(path)
def safe_float(input):
output = 1.0
try:
output = float(input)
except Exception:
output = 1.0
return output
def save_images(images: list[Image.Image], metadatas: list[str]):
from PIL import PngImagePlugin
import uuid
try:
output_images = []
for image, metadata in zip(images, metadatas):
info = PngImagePlugin.PngInfo()
info.add_text("parameters", metadata)
savefile = f"{str(uuid.uuid4())}.png"
image.save(savefile, "PNG", pnginfo=info)
output_images.append(str(Path(savefile).resolve()))
return output_images
except Exception as e:
print(f"Failed to save image file: {e}")
raise Exception(f"Failed to save image file:") from e
def save_gallery_images(images, progress=gr.Progress(track_tqdm=True)):
from datetime import datetime, timezone, timedelta
progress(0, desc="Updating gallery...")
dt_now = datetime.now(timezone(timedelta(hours=9)))
basename = dt_now.strftime('%Y%m%d_%H%M%S_')
i = 1
if not images: return images, gr.update(visible=False)
output_images = []
output_paths = []
for image in images:
filename = basename + str(i) + ".png"
i += 1
oldpath = Path(image[0])
newpath = oldpath
try:
if oldpath.exists():
newpath = oldpath.resolve().rename(Path(filename).resolve())
except Exception as e:
print(e)
finally:
output_paths.append(str(newpath))
output_images.append((str(newpath), str(filename)))
progress(1, desc="Gallery updated.")
return gr.update(value=output_images), gr.update(value=output_paths, visible=True)
def download_private_repo(repo_id, dir_path, is_replace):
if not hf_read_token: return
try:
snapshot_download(repo_id=repo_id, local_dir=dir_path, allow_patterns=['*.ckpt', '*.pt', '*.pth', '*.safetensors', '*.bin'], use_auth_token=hf_read_token)
except Exception as e:
print(f"Error: Failed to download {repo_id}.")
print(e)
return
if is_replace:
for file in Path(dir_path).glob("*"):
if file.exists() and "." in file.stem or " " in file.stem and file.suffix in ['.ckpt', '.pt', '.pth', '.safetensors', '.bin']:
newpath = Path(f'{file.parent.name}/{escape_lora_basename(file.stem)}{file.suffix}')
file.resolve().rename(newpath.resolve())
private_model_path_repo_dict = {} # {"local filepath": "huggingface repo_id", ...}
def get_private_model_list(repo_id, dir_path):
global private_model_path_repo_dict
api = HfApi()
if not hf_read_token: return []
try:
files = api.list_repo_files(repo_id, token=hf_read_token)
except Exception as e:
print(f"Error: Failed to list {repo_id}.")
print(e)
return []
model_list = []
for file in files:
path = Path(f"{dir_path}/{file}")
if path.suffix in ['.ckpt', '.pt', '.pth', '.safetensors', '.bin']:
model_list.append(str(path))
for model in model_list:
private_model_path_repo_dict[model] = repo_id
return model_list
def download_private_file(repo_id, path, is_replace):
file = Path(path)
newpath = Path(f'{file.parent.name}/{escape_lora_basename(file.stem)}{file.suffix}') if is_replace else file
if not hf_read_token or newpath.exists(): return
filename = file.name
dirname = file.parent.name
try:
hf_hub_download(repo_id=repo_id, filename=filename, local_dir=dirname, use_auth_token=hf_read_token)
except Exception as e:
print(f"Error: Failed to download {filename}.")
print(e)
return
if is_replace:
file.resolve().rename(newpath.resolve())
def download_private_file_from_somewhere(path, is_replace):
if not path in private_model_path_repo_dict.keys(): return
repo_id = private_model_path_repo_dict.get(path, None)
download_private_file(repo_id, path, is_replace)
model_id_list = []
def get_model_id_list():
global model_id_list
if len(model_id_list) != 0: return model_id_list
api = HfApi()
model_ids = []
try:
models_likes = []
for author in HF_MODEL_USER_LIKES:
models_likes.extend(api.list_models(author=author, task="text-to-image", cardData=True, sort="likes"))
models_ex = []
for author in HF_MODEL_USER_EX:
models_ex = api.list_models(author=author, task="text-to-image", cardData=True, sort="last_modified")
except Exception as e:
print(f"Error: Failed to list {author}'s models.")
print(e)
return model_ids
for model in models_likes:
model_ids.append(model.id) if not model.private else ""
anime_models = []
real_models = []
anime_models_flux = []
real_models_flux = []
for model in models_ex:
if not model.private and not model.gated:
if "diffusers:FluxPipeline" in model.tags: anime_models_flux.append(model.id) if "anime" in model.tags else real_models_flux.append(model.id)
else: anime_models.append(model.id) if "anime" in model.tags else real_models.append(model.id)
model_ids.extend(anime_models)
model_ids.extend(real_models)
model_ids.extend(anime_models_flux)
model_ids.extend(real_models_flux)
model_id_list = model_ids.copy()
return model_ids
model_id_list = get_model_id_list()
def get_t2i_model_info(repo_id: str):
api = HfApi(token=HF_TOKEN)
try:
if not is_repo_name(repo_id): return ""
model = api.model_info(repo_id=repo_id, timeout=5.0)
except Exception as e:
print(f"Error: Failed to get {repo_id}'s info.")
print(e)
return ""
if model.private or model.gated: return ""
tags = model.tags
info = []
url = f"https://huggingface.co/{repo_id}/"
if not 'diffusers' in tags: return ""
for k, v in MODEL_TYPE_DICT.items():
if k in tags: info.append(v)
if model.card_data and model.card_data.tags:
info.extend(list_sub(model.card_data.tags, ['text-to-image', 'stable-diffusion', 'stable-diffusion-api', 'safetensors', 'stable-diffusion-xl']))
info.append(f"DLs: {model.downloads}")
info.append(f"likes: {model.likes}")
info.append(model.last_modified.strftime("lastmod: %Y-%m-%d"))
md = f"Model Info: {', '.join(info)}, [Model Repo]({url})"
return gr.update(value=md)
def get_tupled_model_list(model_list):
if not model_list: return []
tupled_list = []
for repo_id in model_list:
api = HfApi()
try:
if not api.repo_exists(repo_id): continue
model = api.model_info(repo_id=repo_id)
except Exception as e:
print(e)
continue
if model.private or model.gated: continue
tags = model.tags
info = []
if not 'diffusers' in tags: continue
for k, v in MODEL_TYPE_DICT.items():
if k in tags: info.append(v)
if model.card_data and model.card_data.tags:
info.extend(list_sub(model.card_data.tags, ['text-to-image', 'stable-diffusion', 'stable-diffusion-api', 'safetensors', 'stable-diffusion-xl']))
if "pony" in info:
info.remove("pony")
name = f"{repo_id} (Pony🐴, {', '.join(info)})"
else:
name = f"{repo_id} ({', '.join(info)})"
tupled_list.append((name, repo_id))
return tupled_list
private_lora_dict = {}
try:
with open('lora_dict.json', encoding='utf-8') as f:
d = json.load(f)
for k, v in d.items():
private_lora_dict[escape_lora_basename(k)] = v
except Exception as e:
print(e)
loras_dict = {"None": ["", "", "", "", ""], "": ["", "", "", "", ""]} | private_lora_dict.copy()
civitai_not_exists_list = []
loras_url_to_path_dict = {} # {"URL to download": "local filepath", ...}
civitai_last_results = {} # {"URL to download": {search results}, ...}
civitai_last_choices = [("", "")]
civitai_last_gallery = []
all_lora_list = []
private_lora_model_list = []
def get_private_lora_model_lists():
global private_lora_model_list
if len(private_lora_model_list) != 0: return private_lora_model_list
models1 = []
models2 = []
for repo in HF_LORA_PRIVATE_REPOS1:
models1.extend(get_private_model_list(repo, directory_loras))
for repo in HF_LORA_PRIVATE_REPOS2:
models2.extend(get_private_model_list(repo, directory_loras))
models = list_uniq(models1 + sorted(models2))
private_lora_model_list = models.copy()
return models
private_lora_model_list = get_private_lora_model_lists()
def get_civitai_info(path):
global civitai_not_exists_list
if path in set(civitai_not_exists_list): return ["", "", "", "", ""]
if not Path(path).exists(): return None
user_agent = get_user_agent()
headers = {'User-Agent': user_agent, 'content-type': 'application/json'}
base_url = 'https://civitai.com/api/v1/model-versions/by-hash/'
params = {}
session = requests.Session()
retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504])
session.mount("https://", HTTPAdapter(max_retries=retries))
import hashlib
with open(path, 'rb') as file:
file_data = file.read()
hash_sha256 = hashlib.sha256(file_data).hexdigest()
url = base_url + hash_sha256
try:
r = session.get(url, params=params, headers=headers, stream=True, timeout=(3.0, 15))
except Exception as e:
print(e)
return ["", "", "", "", ""]
if not r.ok: return None
json = r.json()
if not 'baseModel' in json:
civitai_not_exists_list.append(path)
return ["", "", "", "", ""]
items = []
items.append(" / ".join(json['trainedWords']))
items.append(json['baseModel'])
items.append(json['model']['name'])
items.append(f"https://civitai.com/models/{json['modelId']}")
items.append(json['images'][0]['url'])
return items
def get_lora_model_list():
loras = list_uniq(get_private_lora_model_lists() + DIFFUSERS_FORMAT_LORAS + get_local_model_list(directory_loras))
loras.insert(0, "None")
loras.insert(0, "")
return loras
def get_all_lora_list():
global all_lora_list
loras = get_lora_model_list()
all_lora_list = loras.copy()
return loras
def get_all_lora_tupled_list():
global loras_dict
models = get_all_lora_list()
if not models: return []
tupled_list = []
for model in models:
#if not model: continue # to avoid GUI-related bug
basename = Path(model).stem
key = to_lora_key(model)
items = None
if key in loras_dict.keys():
items = loras_dict.get(key, None)
else:
items = get_civitai_info(model)
if items != None:
loras_dict[key] = items
name = basename
value = model
if items and items[2] != "":
if items[1] == "Pony":
name = f"{basename} (for {items[1]}🐴, {items[2]})"
else:
name = f"{basename} (for {items[1]}, {items[2]})"
tupled_list.append((name, value))
return tupled_list
def update_lora_dict(path):
global loras_dict
key = escape_lora_basename(Path(path).stem)
if key in loras_dict.keys(): return
items = get_civitai_info(path)
if items == None: return
loras_dict[key] = items
def download_lora(dl_urls: str):
global loras_url_to_path_dict
dl_path = ""
before = get_local_model_list(directory_loras)
urls = []
for url in [url.strip() for url in dl_urls.split(',')]:
local_path = f"{directory_loras}/{url.split('/')[-1]}"
if not Path(local_path).exists():
download_things(directory_loras, url, HF_TOKEN, CIVITAI_API_KEY)
urls.append(url)
after = get_local_model_list(directory_loras)
new_files = list_sub(after, before)
i = 0
for file in new_files:
path = Path(file)
if path.exists():
new_path = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}')
path.resolve().rename(new_path.resolve())
loras_url_to_path_dict[urls[i]] = str(new_path)
update_lora_dict(str(new_path))
dl_path = str(new_path)
i += 1
return dl_path
def copy_lora(path: str, new_path: str):
if path == new_path: return new_path
cpath = Path(path)
npath = Path(new_path)
if cpath.exists():
try:
shutil.copy(str(cpath.resolve()), str(npath.resolve()))
except Exception as e:
print(e)
return None
update_lora_dict(str(npath))
return new_path
else:
return None
def download_my_lora(dl_urls: str, lora1: str, lora2: str, lora3: str, lora4: str, lora5: str):
path = download_lora(dl_urls)
if path:
if not lora1 or lora1 == "None":
lora1 = path
elif not lora2 or lora2 == "None":
lora2 = path
elif not lora3 or lora3 == "None":
lora3 = path
elif not lora4 or lora4 == "None":
lora4 = path
elif not lora5 or lora5 == "None":
lora5 = path
choices = get_all_lora_tupled_list()
return gr.update(value=lora1, choices=choices), gr.update(value=lora2, choices=choices), gr.update(value=lora3, choices=choices),\
gr.update(value=lora4, choices=choices), gr.update(value=lora5, choices=choices)
def get_valid_lora_name(query: str, model_name: str):
path = "None"
if not query or query == "None": return "None"
if to_lora_key(query) in loras_dict.keys(): return query
if query in loras_url_to_path_dict.keys():
path = loras_url_to_path_dict[query]
else:
path = to_lora_path(query.strip().split('/')[-1])
if Path(path).exists():
return path
elif "http" in query:
dl_file = download_lora(query)
if dl_file and Path(dl_file).exists(): return dl_file
else:
dl_file = find_similar_lora(query, model_name)
if dl_file and Path(dl_file).exists(): return dl_file
return "None"
def get_valid_lora_path(query: str):
path = None
if not query or query == "None": return None
if to_lora_key(query) in loras_dict.keys(): return query
if Path(path).exists():
return path
else:
return None
def get_valid_lora_wt(prompt: str, lora_path: str, lora_wt: float):
wt = lora_wt
result = re.findall(f'<lora:{to_lora_key(lora_path)}:(.+?)>', prompt)
if not result: return wt
wt = safe_float(result[0][0])
return wt
def set_prompt_loras(prompt, prompt_syntax, model_name, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt):
if not "Classic" in str(prompt_syntax): return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt
lora1 = get_valid_lora_name(lora1, model_name)
lora2 = get_valid_lora_name(lora2, model_name)
lora3 = get_valid_lora_name(lora3, model_name)
lora4 = get_valid_lora_name(lora4, model_name)
lora5 = get_valid_lora_name(lora5, model_name)
if not "<lora" in prompt: return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt
lora1_wt = get_valid_lora_wt(prompt, lora1, lora1_wt)
lora2_wt = get_valid_lora_wt(prompt, lora2, lora2_wt)
lora3_wt = get_valid_lora_wt(prompt, lora3, lora3_wt)
lora4_wt = get_valid_lora_wt(prompt, lora4, lora4_wt)
lora5_wt = get_valid_lora_wt(prompt, lora5, lora5_wt)
on1, label1, tag1, md1 = get_lora_info(lora1)
on2, label2, tag2, md2 = get_lora_info(lora2)
on3, label3, tag3, md3 = get_lora_info(lora3)
on4, label4, tag4, md4 = get_lora_info(lora4)
on5, label5, tag5, md5 = get_lora_info(lora5)
lora_paths = [lora1, lora2, lora3, lora4, lora5]
prompts = prompt.split(",") if prompt else []
for p in prompts:
p = str(p).strip()
if "<lora" in p:
result = re.findall(r'<lora:(.+?):(.+?)>', p)
if not result: continue
key = result[0][0]
wt = result[0][1]
path = to_lora_path(key)
if not key in loras_dict.keys() or not path:
path = get_valid_lora_name(path)
if not path or path == "None": continue
if path in lora_paths:
continue
elif not on1:
lora1 = path
lora_paths = [lora1, lora2, lora3, lora4, lora5]
lora1_wt = safe_float(wt)
on1 = True
elif not on2:
lora2 = path
lora_paths = [lora1, lora2, lora3, lora4, lora5]
lora2_wt = safe_float(wt)
on2 = True
elif not on3:
lora3 = path
lora_paths = [lora1, lora2, lora3, lora4, lora5]
lora3_wt = safe_float(wt)
on3 = True
elif not on4:
lora4 = path
lora_paths = [lora1, lora2, lora3, lora4, lora5]
lora4_wt = safe_float(wt)
on4, label4, tag4, md4 = get_lora_info(lora4)
elif not on5:
lora5 = path
lora_paths = [lora1, lora2, lora3, lora4, lora5]
lora5_wt = safe_float(wt)
on5 = True
return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt
def get_lora_info(lora_path: str):
is_valid = False
tag = ""
label = ""
md = "None"
if not lora_path or lora_path == "None":
print("LoRA file not found.")
return is_valid, label, tag, md
path = Path(lora_path)
new_path = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}')
if not to_lora_key(str(new_path)) in loras_dict.keys() and str(path) not in set(get_all_lora_list()):
print("LoRA file is not registered.")
return tag, label, tag, md
if not new_path.exists():
download_private_file_from_somewhere(str(path), True)
basename = new_path.stem
label = f'Name: {basename}'
items = loras_dict.get(basename, None)
if items == None:
items = get_civitai_info(str(new_path))
if items != None:
loras_dict[basename] = items
if items and items[2] != "":
tag = items[0]
label = f'Name: {basename}'
if items[1] == "Pony":
label = f'Name: {basename} (for Pony🐴)'
if items[4]:
md = f'<img src="{items[4]}" alt="thumbnail" width="150" height="240"><br>[LoRA Model URL]({items[3]})'
elif items[3]:
md = f'[LoRA Model URL]({items[3]})'
is_valid = True
return is_valid, label, tag, md
def normalize_prompt_list(tags: list[str]):
prompts = []
for tag in tags:
tag = str(tag).strip()
if tag:
prompts.append(tag)
return prompts
def apply_lora_prompt(prompt: str = "", lora_info: str = ""):
if lora_info == "None": return gr.update(value=prompt)
tags = prompt.split(",") if prompt else []
prompts = normalize_prompt_list(tags)
lora_tag = lora_info.replace("/",",")
lora_tags = lora_tag.split(",") if str(lora_info) != "None" else []
lora_prompts = normalize_prompt_list(lora_tags)
empty = [""]
prompt = ", ".join(list_uniq(prompts + lora_prompts) + empty)
return gr.update(value=prompt)
def update_loras(prompt, prompt_syntax, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt):
on1, label1, tag1, md1 = get_lora_info(lora1)
on2, label2, tag2, md2 = get_lora_info(lora2)
on3, label3, tag3, md3 = get_lora_info(lora3)
on4, label4, tag4, md4 = get_lora_info(lora4)
on5, label5, tag5, md5 = get_lora_info(lora5)
lora_paths = [lora1, lora2, lora3, lora4, lora5]
output_prompt = prompt
if "Classic" in str(prompt_syntax):
prompts = prompt.split(",") if prompt else []
output_prompts = []
for p in prompts:
p = str(p).strip()
if "<lora" in p:
result = re.findall(r'<lora:(.+?):(.+?)>', p)
if not result: continue
key = result[0][0]
wt = result[0][1]
path = to_lora_path(key)
if not key in loras_dict.keys() or not path: continue
if path in lora_paths:
output_prompts.append(f"<lora:{to_lora_key(path)}:{safe_float(wt):.2f}>")
elif p:
output_prompts.append(p)
lora_prompts = []
if on1: lora_prompts.append(f"<lora:{to_lora_key(lora1)}:{lora1_wt:.2f}>")
if on2: lora_prompts.append(f"<lora:{to_lora_key(lora2)}:{lora2_wt:.2f}>")
if on3: lora_prompts.append(f"<lora:{to_lora_key(lora3)}:{lora3_wt:.2f}>")
if on4: lora_prompts.append(f"<lora:{to_lora_key(lora4)}:{lora4_wt:.2f}>")
if on5: lora_prompts.append(f"<lora:{to_lora_key(lora5)}:{lora5_wt:.2f}>")
output_prompt = ", ".join(list_uniq(output_prompts + lora_prompts + [""]))
choices = get_all_lora_tupled_list()
return gr.update(value=output_prompt), gr.update(value=lora1, choices=choices), gr.update(value=lora1_wt),\
gr.update(value=tag1, label=label1, visible=on1), gr.update(visible=on1), gr.update(value=md1, visible=on1),\
gr.update(value=lora2, choices=choices), gr.update(value=lora2_wt),\
gr.update(value=tag2, label=label2, visible=on2), gr.update(visible=on2), gr.update(value=md2, visible=on2),\
gr.update(value=lora3, choices=choices), gr.update(value=lora3_wt),\
gr.update(value=tag3, label=label3, visible=on3), gr.update(visible=on3), gr.update(value=md3, visible=on3),\
gr.update(value=lora4, choices=choices), gr.update(value=lora4_wt),\
gr.update(value=tag4, label=label4, visible=on4), gr.update(visible=on4), gr.update(value=md4, visible=on4),\
gr.update(value=lora5, choices=choices), gr.update(value=lora5_wt),\
gr.update(value=tag5, label=label5, visible=on5), gr.update(visible=on5), gr.update(value=md5, visible=on5)
def get_my_lora(link_url):
before = get_local_model_list(directory_loras)
for url in [url.strip() for url in link_url.split(',')]:
if not Path(f"{directory_loras}/{url.split('/')[-1]}").exists():
download_things(directory_loras, url, HF_TOKEN, CIVITAI_API_KEY)
after = get_local_model_list(directory_loras)
new_files = list_sub(after, before)
for file in new_files:
path = Path(file)
if path.exists():
new_path = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}')
path.resolve().rename(new_path.resolve())
update_lora_dict(str(new_path))
new_lora_model_list = get_lora_model_list()
new_lora_tupled_list = get_all_lora_tupled_list()
return gr.update(
choices=new_lora_tupled_list, value=new_lora_model_list[-1]
), gr.update(
choices=new_lora_tupled_list
), gr.update(
choices=new_lora_tupled_list
), gr.update(
choices=new_lora_tupled_list
), gr.update(
choices=new_lora_tupled_list
)
def upload_file_lora(files, progress=gr.Progress(track_tqdm=True)):
progress(0, desc="Uploading...")
file_paths = [file.name for file in files]
progress(1, desc="Uploaded.")
return gr.update(value=file_paths, visible=True), gr.update(visible=True)
def move_file_lora(filepaths):
for file in filepaths:
path = Path(shutil.move(Path(file).resolve(), Path(f"./{directory_loras}").resolve()))
newpath = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}')
path.resolve().rename(newpath.resolve())
update_lora_dict(str(newpath))
new_lora_model_list = get_lora_model_list()
new_lora_tupled_list = get_all_lora_tupled_list()
return gr.update(
choices=new_lora_tupled_list, value=new_lora_model_list[-1]
), gr.update(
choices=new_lora_tupled_list
), gr.update(
choices=new_lora_tupled_list
), gr.update(
choices=new_lora_tupled_list
), gr.update(
choices=new_lora_tupled_list
)
CIVITAI_SORT = ["Highest Rated", "Most Downloaded", "Newest"]
CIVITAI_PERIOD = ["AllTime", "Year", "Month", "Week", "Day"]
CIVITAI_BASEMODEL = ["Pony", "SD 1.5", "SDXL 1.0", "Flux.1 D", "Flux.1 S"]
def get_civitai_info(path):
global civitai_not_exists_list, loras_url_to_path_dict
default = ["", "", "", "", ""]
if path in set(civitai_not_exists_list): return default
if not Path(path).exists(): return None
user_agent = get_user_agent()
headers = {'User-Agent': user_agent, 'content-type': 'application/json'}
base_url = 'https://civitai.com/api/v1/model-versions/by-hash/'
params = {}
session = requests.Session()
retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504])
session.mount("https://", HTTPAdapter(max_retries=retries))
import hashlib
with open(path, 'rb') as file:
file_data = file.read()
hash_sha256 = hashlib.sha256(file_data).hexdigest()
url = base_url + hash_sha256
try:
r = session.get(url, params=params, headers=headers, stream=True, timeout=(3.0, 15))
except Exception as e:
print(e)
return default
else:
if not r.ok: return None
json = r.json()
if 'baseModel' not in json:
civitai_not_exists_list.append(path)
return default
items = []
items.append(" / ".join(json['trainedWords'])) # The words (prompts) used to trigger the model
items.append(json['baseModel']) # Base model (SDXL1.0, Pony, ...)
items.append(json['model']['name']) # The name of the model version
items.append(f"https://civitai.com/models/{json['modelId']}") # The repo url for the model
items.append(json['images'][0]['url']) # The url for a sample image
loras_url_to_path_dict[path] = json['downloadUrl'] # The download url to get the model file for this specific version
return items
def search_lora_on_civitai(query: str, allow_model: list[str] = ["Pony", "SDXL 1.0"], limit: int = 100,
sort: str = "Highest Rated", period: str = "AllTime", tag: str = "", user: str = "", page: int = 1):
user_agent = get_user_agent()
headers = {'User-Agent': user_agent, 'content-type': 'application/json'}
base_url = 'https://civitai.com/api/v1/models'
params = {'types': ['LORA'], 'sort': sort, 'period': period, 'limit': limit, 'page': int(page), 'nsfw': 'true'}
if query: params["query"] = query
if tag: params["tag"] = tag
if user: params["username"] = user
session = requests.Session()
retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504])
session.mount("https://", HTTPAdapter(max_retries=retries))
try:
r = session.get(base_url, params=params, headers=headers, stream=True, timeout=(3.0, 30))
except Exception as e:
print(e)
return None
else:
if not r.ok: return None
json = r.json()
if 'items' not in json: return None
items = []
for j in json['items']:
for model in j['modelVersions']:
item = {}
if len(allow_model) != 0 and model['baseModel'] not in set(allow_model): continue
item['name'] = j['name']
item['creator'] = j['creator']['username'] if 'creator' in j.keys() and 'username' in j['creator'].keys() else ""
item['tags'] = j['tags'] if 'tags' in j.keys() else []
item['model_name'] = model['name'] if 'name' in model.keys() else ""
item['base_model'] = model['baseModel'] if 'baseModel' in model.keys() else ""
item['description'] = model['description'] if 'description' in model.keys() else ""
item['dl_url'] = model['downloadUrl']
item['md'] = ""
if 'images' in model.keys() and len(model["images"]) != 0:
item['img_url'] = model["images"][0]["url"]
item['md'] += f'<img src="{model["images"][0]["url"]}#float" alt="thumbnail" width="150" height="240"><br>'
else: item['img_url'] = "/home/user/app/null.png"
item['md'] += f'''Model URL: [https://civitai.com/models/{j["id"]}](https://civitai.com/models/{j["id"]})<br>Model Name: {item["name"]}<br>
Creator: {item["creator"]}<br>Tags: {", ".join(item["tags"])}<br>Base Model: {item["base_model"]}<br>Description: {item["description"]}'''
items.append(item)
return items
def search_civitai_lora(query, base_model=[], sort=CIVITAI_SORT[0], period=CIVITAI_PERIOD[0], tag="", user="", gallery=[]):
global civitai_last_results, civitai_last_choices, civitai_last_gallery
civitai_last_choices = [("", "")]
civitai_last_gallery = []
civitai_last_results = {}
items = search_lora_on_civitai(query, base_model, 100, sort, period, tag, user)
if not items: return gr.update(choices=[("", "")], value="", visible=False),\
gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
civitai_last_results = {}
choices = []
gallery = []
for item in items:
base_model_name = "Pony🐴" if item['base_model'] == "Pony" else item['base_model']
name = f"{item['name']} (for {base_model_name} / By: {item['creator']} / Tags: {', '.join(item['tags'])})"
value = item['dl_url']
choices.append((name, value))
gallery.append((item['img_url'], name))
civitai_last_results[value] = item
if not choices: return gr.update(choices=[("", "")], value="", visible=False),\
gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
civitai_last_choices = choices
civitai_last_gallery = gallery
result = civitai_last_results.get(choices[0][1], "None")
md = result['md'] if result else ""
return gr.update(choices=choices, value=choices[0][1], visible=True), gr.update(value=md, visible=True),\
gr.update(visible=True), gr.update(visible=True), gr.update(value=gallery)
def update_civitai_selection(evt: gr.SelectData):
try:
selected_index = evt.index
selected = civitai_last_choices[selected_index][1]
return gr.update(value=selected)
except Exception:
return gr.update(visible=True)
def select_civitai_lora(search_result):
if not "http" in search_result: return gr.update(value=""), gr.update(value="None", visible=True)
result = civitai_last_results.get(search_result, "None")
md = result['md'] if result else ""
return gr.update(value=search_result), gr.update(value=md, visible=True)
def download_my_lora_flux(dl_urls: str, lora):
path = download_lora(dl_urls)
if path: lora = path
choices = get_all_lora_tupled_list()
return gr.update(value=lora, choices=choices)
def apply_lora_prompt_flux(lora_info: str):
if lora_info == "None": return ""
lora_tag = lora_info.replace("/",",")
lora_tags = lora_tag.split(",") if str(lora_info) != "None" else []
lora_prompts = normalize_prompt_list(lora_tags)
prompt = ", ".join(list_uniq(lora_prompts))
return prompt
def update_loras_flux(prompt, lora, lora_wt):
on, label, tag, md = get_lora_info(lora)
choices = get_all_lora_tupled_list()
return gr.update(value=prompt), gr.update(value=lora, choices=choices), gr.update(value=lora_wt),\
gr.update(value=tag, label=label, visible=on), gr.update(value=md, visible=on)
def search_civitai_lora_json(query, base_model):
results = {}
items = search_lora_on_civitai(query, base_model)
if not items: return gr.update(value=results)
for item in items:
results[item['dl_url']] = item
return gr.update(value=results)
def get_civitai_tag():
default = [""]
user_agent = get_user_agent()
headers = {'User-Agent': user_agent, 'content-type': 'application/json'}
base_url = 'https://civitai.com/api/v1/tags'
params = {'limit': 200}
session = requests.Session()
retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504])
session.mount("https://", HTTPAdapter(max_retries=retries))
url = base_url
try:
r = session.get(url, params=params, headers=headers, stream=True, timeout=(3.0, 15))
if not r.ok: return default
j = dict(r.json()).copy()
if "items" not in j.keys(): return default
items = []
for item in j["items"]:
items.append([str(item.get("name", "")), int(item.get("modelCount", 0))])
df = pd.DataFrame(items)
df.sort_values(1, ascending=False)
tags = df.values.tolist()
tags = [""] + [l[0] for l in tags]
return tags
except Exception as e:
print(e)
return default
LORA_BASE_MODEL_DICT = {
"diffusers:StableDiffusionPipeline": ["SD 1.5"],
"diffusers:StableDiffusionXLPipeline": ["Pony", "SDXL 1.0"],
"diffusers:FluxPipeline": ["Flux.1 D", "Flux.1 S"],
}
def get_lora_base_model(model_name: str):
api = HfApi(token=HF_TOKEN)
default = ["Pony", "SDXL 1.0"]
try:
model = api.model_info(repo_id=model_name, timeout=5.0)
tags = model.tags
for tag in tags:
if tag in LORA_BASE_MODEL_DICT.keys(): return LORA_BASE_MODEL_DICT.get(tag, default)
except Exception:
return default
return default
def find_similar_lora(q: str, model_name: str):
from rapidfuzz.process import extractOne
from rapidfuzz.utils import default_process
query = to_lora_key(q)
print(f"Finding <lora:{query}:...>...")
keys = list(private_lora_dict.keys())
values = [x[2] for x in list(private_lora_dict.values())]
s = default_process(query)
e1 = extractOne(s, keys + values, processor=default_process, score_cutoff=80.0)
key = ""
if e1:
e = e1[0]
if e in set(keys): key = e
elif e in set(values): key = keys[values.index(e)]
if key:
path = to_lora_path(key)
new_path = to_lora_path(query)
if not Path(path).exists():
if not Path(new_path).exists(): download_private_file_from_somewhere(path, True)
if Path(path).exists() and copy_lora(path, new_path): return new_path
print(f"Finding <lora:{query}:...> on Civitai...")
civitai_query = Path(query).stem if Path(query).is_file() else query
civitai_query = civitai_query.replace("_", " ").replace("-", " ")
base_model = get_lora_base_model(model_name)
items = search_lora_on_civitai(civitai_query, base_model, 1)
if items:
item = items[0]
path = download_lora(item['dl_url'])
new_path = query if Path(query).is_file() else to_lora_path(query)
if path and copy_lora(path, new_path): return new_path
return None
def change_interface_mode(mode: str):
if mode == "Fast":
return gr.update(open=False), gr.update(visible=True), gr.update(open=False), gr.update(open=False),\
gr.update(visible=True), gr.update(open=False), gr.update(visible=True), gr.update(open=False),\
gr.update(visible=True), gr.update(value="Fast")
elif mode == "Simple": # t2i mode
return gr.update(open=True), gr.update(visible=True), gr.update(open=False), gr.update(open=False),\
gr.update(visible=True), gr.update(open=False), gr.update(visible=False), gr.update(open=True),\
gr.update(visible=False), gr.update(value="Standard")
elif mode == "LoRA": # t2i LoRA mode
return gr.update(open=True), gr.update(visible=True), gr.update(open=True), gr.update(open=False),\
gr.update(visible=True), gr.update(open=True), gr.update(visible=True), gr.update(open=False),\
gr.update(visible=False), gr.update(value="Standard")
else: # Standard
return gr.update(open=False), gr.update(visible=True), gr.update(open=False), gr.update(open=False),\
gr.update(visible=True), gr.update(open=False), gr.update(visible=True), gr.update(open=False),\
gr.update(visible=True), gr.update(value="Standard")
quality_prompt_list = [
{
"name": "None",
"prompt": "",
"negative_prompt": "lowres",
},
{
"name": "Animagine Common",
"prompt": "anime artwork, anime style, vibrant, studio anime, highly detailed, masterpiece, best quality, very aesthetic, absurdres",
"negative_prompt": "lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
},
{
"name": "Pony Anime Common",
"prompt": "source_anime, score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres",
"negative_prompt": "source_pony, source_furry, source_cartoon, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends",
},
{
"name": "Pony Common",
"prompt": "source_anime, score_9, score_8_up, score_7_up",
"negative_prompt": "source_pony, source_furry, source_cartoon, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends",
},
{
"name": "Animagine Standard v3.0",
"prompt": "masterpiece, best quality",
"negative_prompt": "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name",
},
{
"name": "Animagine Standard v3.1",
"prompt": "masterpiece, best quality, very aesthetic, absurdres",
"negative_prompt": "lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
},
{
"name": "Animagine Light v3.1",
"prompt": "(masterpiece), best quality, very aesthetic, perfect face",
"negative_prompt": "(low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn",
},
{
"name": "Animagine Heavy v3.1",
"prompt": "(masterpiece), (best quality), (ultra-detailed), very aesthetic, illustration, disheveled hair, perfect composition, moist skin, intricate details",
"negative_prompt": "longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair, extra digit, fewer digits, cropped, worst quality, low quality, very displeasing",
},
]
style_list = [
{
"name": "None",
"prompt": "",
"negative_prompt": "",
},
{
"name": "Cinematic",
"prompt": "cinematic still, emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
"negative_prompt": "cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
},
{
"name": "Photographic",
"prompt": "cinematic photo, 35mm photograph, film, bokeh, professional, 4k, highly detailed",
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
},
{
"name": "Anime",
"prompt": "anime artwork, anime style, vibrant, studio anime, highly detailed",
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
},
{
"name": "Manga",
"prompt": "manga style, vibrant, high-energy, detailed, iconic, Japanese comic style",
"negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style",
},
{
"name": "Digital Art",
"prompt": "concept art, digital artwork, illustrative, painterly, matte painting, highly detailed",
"negative_prompt": "photo, photorealistic, realism, ugly",
},
{
"name": "Pixel art",
"prompt": "pixel-art, low-res, blocky, pixel art style, 8-bit graphics",
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
},
{
"name": "Fantasy art",
"prompt": "ethereal fantasy concept art, magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
},
{
"name": "Neonpunk",
"prompt": "neonpunk style, cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured",
},
{
"name": "3D Model",
"prompt": "professional 3d model, octane render, highly detailed, volumetric, dramatic lighting",
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
},
]
optimization_list = {
"None": [28, 7., 'Euler a', False, 'None', 1.],
"Default": [28, 7., 'Euler a', False, 'None', 1.],
"SPO": [28, 7., 'Euler a', True, 'loras/spo_sdxl_10ep_4k-data_lora_diffusers.safetensors', 1.],
"DPO": [28, 7., 'Euler a', True, 'loras/sdxl-DPO-LoRA.safetensors', 1.],
"DPO Turbo": [8, 2.5, 'LCM', True, 'loras/sd_xl_dpo_turbo_lora_v1-128dim.safetensors', 1.],
"SDXL Turbo": [8, 2.5, 'LCM', True, 'loras/sd_xl_turbo_lora_v1.safetensors', 1.],
"Hyper-SDXL 12step": [12, 5., 'TCD', True, 'loras/Hyper-SDXL-12steps-CFG-lora.safetensors', 1.],
"Hyper-SDXL 8step": [8, 5., 'TCD', True, 'loras/Hyper-SDXL-8steps-CFG-lora.safetensors', 1.],
"Hyper-SDXL 4step": [4, 0, 'TCD', True, 'loras/Hyper-SDXL-4steps-lora.safetensors', 1.],
"Hyper-SDXL 2step": [2, 0, 'TCD', True, 'loras/Hyper-SDXL-2steps-lora.safetensors', 1.],
"Hyper-SDXL 1step": [1, 0, 'TCD', True, 'loras/Hyper-SDXL-1steps-lora.safetensors', 1.],
"PCM 16step": [16, 4., 'Euler a trailing', True, 'loras/pcm_sdxl_normalcfg_16step_converted.safetensors', 1.],
"PCM 8step": [8, 4., 'Euler a trailing', True, 'loras/pcm_sdxl_normalcfg_8step_converted.safetensors', 1.],
"PCM 4step": [4, 2., 'Euler a trailing', True, 'loras/pcm_sdxl_smallcfg_4step_converted.safetensors', 1.],
"PCM 2step": [2, 1., 'Euler a trailing', True, 'loras/pcm_sdxl_smallcfg_2step_converted.safetensors', 1.],
}
def set_optimization(opt, steps_gui, cfg_gui, sampler_gui, clip_skip_gui, lora_gui, lora_scale_gui):
if not opt in list(optimization_list.keys()): opt = "None"
def_steps_gui = 28
def_cfg_gui = 7.
steps = optimization_list.get(opt, "None")[0]
cfg = optimization_list.get(opt, "None")[1]
sampler = optimization_list.get(opt, "None")[2]
clip_skip = optimization_list.get(opt, "None")[3]
lora = optimization_list.get(opt, "None")[4]
lora_scale = optimization_list.get(opt, "None")[5]
if opt == "None":
steps = max(steps_gui, def_steps_gui)
cfg = max(cfg_gui, def_cfg_gui)
clip_skip = clip_skip_gui
elif opt == "SPO" or opt == "DPO":
steps = max(steps_gui, def_steps_gui)
cfg = max(cfg_gui, def_cfg_gui)
return gr.update(value=steps), gr.update(value=cfg), gr.update(value=sampler),\
gr.update(value=clip_skip), gr.update(value=lora), gr.update(value=lora_scale),
# [sampler_gui, steps_gui, cfg_gui, clip_skip_gui, img_width_gui, img_height_gui, optimization_gui]
preset_sampler_setting = {
"None": ["Euler a", 28, 7., True, 1024, 1024, "None"],
"Anime 3:4 Fast": ["LCM", 8, 2.5, True, 896, 1152, "DPO Turbo"],
"Anime 3:4 Standard": ["Euler a", 28, 7., True, 896, 1152, "None"],
"Anime 3:4 Heavy": ["Euler a", 40, 7., True, 896, 1152, "None"],
"Anime 1:1 Fast": ["LCM", 8, 2.5, True, 1024, 1024, "DPO Turbo"],
"Anime 1:1 Standard": ["Euler a", 28, 7., True, 1024, 1024, "None"],
"Anime 1:1 Heavy": ["Euler a", 40, 7., True, 1024, 1024, "None"],
"Photo 3:4 Fast": ["LCM", 8, 2.5, False, 896, 1152, "DPO Turbo"],
"Photo 3:4 Standard": ["DPM++ 2M Karras", 28, 7., False, 896, 1152, "None"],
"Photo 3:4 Heavy": ["DPM++ 2M Karras", 40, 7., False, 896, 1152, "None"],
"Photo 1:1 Fast": ["LCM", 8, 2.5, False, 1024, 1024, "DPO Turbo"],
"Photo 1:1 Standard": ["DPM++ 2M Karras", 28, 7., False, 1024, 1024, "None"],
"Photo 1:1 Heavy": ["DPM++ 2M Karras", 40, 7., False, 1024, 1024, "None"],
}
def set_sampler_settings(sampler_setting):
if not sampler_setting in list(preset_sampler_setting.keys()) or sampler_setting == "None":
return gr.update(value="Euler a"), gr.update(value=28), gr.update(value=7.), gr.update(value=True),\
gr.update(value=1024), gr.update(value=1024), gr.update(value="None")
v = preset_sampler_setting.get(sampler_setting, ["Euler a", 28, 7., True, 1024, 1024])
# sampler, steps, cfg, clip_skip, width, height, optimization
return gr.update(value=v[0]), gr.update(value=v[1]), gr.update(value=v[2]), gr.update(value=v[3]),\
gr.update(value=v[4]), gr.update(value=v[5]), gr.update(value=v[6])
preset_styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
preset_quality = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in quality_prompt_list}
def process_style_prompt(prompt: str, neg_prompt: str, styles_key: str = "None", quality_key: str = "None", type: str = "Auto"):
animagine_ps = to_list("anime artwork, anime style, vibrant, studio anime, highly detailed, masterpiece, best quality, very aesthetic, absurdres")
animagine_nps = to_list("lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]")
pony_ps = to_list("source_anime, score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres")
pony_nps = to_list("source_pony, source_furry, source_cartoon, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends")
prompts = to_list(prompt)
neg_prompts = to_list(neg_prompt)
all_styles_ps = []
all_styles_nps = []
for d in style_list:
all_styles_ps.extend(to_list(str(d.get("prompt", ""))))
all_styles_nps.extend(to_list(str(d.get("negative_prompt", ""))))
all_quality_ps = []
all_quality_nps = []
for d in quality_prompt_list:
all_quality_ps.extend(to_list(str(d.get("prompt", ""))))
all_quality_nps.extend(to_list(str(d.get("negative_prompt", ""))))
quality_ps = to_list(preset_quality[quality_key][0])
quality_nps = to_list(preset_quality[quality_key][1])
styles_ps = to_list(preset_styles[styles_key][0])
styles_nps = to_list(preset_styles[styles_key][1])
prompts = list_sub(prompts, animagine_ps + pony_ps + all_styles_ps + all_quality_ps)
neg_prompts = list_sub(neg_prompts, animagine_nps + pony_nps + all_styles_nps + all_quality_nps)
last_empty_p = [""] if not prompts and type != "None" and type != "Auto" and styles_key != "None" and quality_key != "None" else []
last_empty_np = [""] if not neg_prompts and type != "None" and type != "Auto" and styles_key != "None" and quality_key != "None" else []
if type == "Animagine":
prompts = prompts + animagine_ps
neg_prompts = neg_prompts + animagine_nps
elif type == "Pony":
prompts = prompts + pony_ps
neg_prompts = neg_prompts + pony_nps
prompts = prompts + styles_ps + quality_ps
neg_prompts = neg_prompts + styles_nps + quality_nps
prompt = ", ".join(list_uniq(prompts) + last_empty_p)
neg_prompt = ", ".join(list_uniq(neg_prompts) + last_empty_np)
return gr.update(value=prompt), gr.update(value=neg_prompt), gr.update(value=type)
def set_quick_presets(genre:str = "None", type:str = "Auto", speed:str = "None", aspect:str = "None"):
quality = "None"
style = "None"
sampler = "None"
opt = "None"
if genre == "Anime":
if type != "None" and type != "Auto": style = "Anime"
if aspect == "1:1":
if speed == "Heavy":
sampler = "Anime 1:1 Heavy"
elif speed == "Fast":
sampler = "Anime 1:1 Fast"
else:
sampler = "Anime 1:1 Standard"
elif aspect == "3:4":
if speed == "Heavy":
sampler = "Anime 3:4 Heavy"
elif speed == "Fast":
sampler = "Anime 3:4 Fast"
else:
sampler = "Anime 3:4 Standard"
if type == "Pony":
quality = "Pony Anime Common"
elif type == "Animagine":
quality = "Animagine Common"
else:
quality = "None"
elif genre == "Photo":
if type != "None" and type != "Auto": style = "Photographic"
if aspect == "1:1":
if speed == "Heavy":
sampler = "Photo 1:1 Heavy"
elif speed == "Fast":
sampler = "Photo 1:1 Fast"
else:
sampler = "Photo 1:1 Standard"
elif aspect == "3:4":
if speed == "Heavy":
sampler = "Photo 3:4 Heavy"
elif speed == "Fast":
sampler = "Photo 3:4 Fast"
else:
sampler = "Photo 3:4 Standard"
if type == "Pony":
quality = "Pony Common"
else:
quality = "None"
if speed == "Fast":
opt = "DPO Turbo"
if genre == "Anime" and type != "Pony" and type != "Auto": quality = "Animagine Light v3.1"
return gr.update(value=quality), gr.update(value=style), gr.update(value=sampler), gr.update(value=opt), gr.update(value=type)
textual_inversion_dict = {}
try:
with open('textual_inversion_dict.json', encoding='utf-8') as f:
textual_inversion_dict = json.load(f)
except Exception:
pass
textual_inversion_file_token_list = []
def get_tupled_embed_list(embed_list):
global textual_inversion_file_list
tupled_list = []
for file in embed_list:
token = textual_inversion_dict.get(Path(file).name, [Path(file).stem.replace(",",""), False])[0]
tupled_list.append((token, file))
textual_inversion_file_token_list.append(token)
return tupled_list
def set_textual_inversion_prompt(textual_inversion_gui, prompt_gui, neg_prompt_gui, prompt_syntax_gui):
ti_tags = list(textual_inversion_dict.values()) + textual_inversion_file_token_list
tags = prompt_gui.split(",") if prompt_gui else []
prompts = []
for tag in tags:
tag = str(tag).strip()
if tag and not tag in ti_tags:
prompts.append(tag)
ntags = neg_prompt_gui.split(",") if neg_prompt_gui else []
neg_prompts = []
for tag in ntags:
tag = str(tag).strip()
if tag and not tag in ti_tags:
neg_prompts.append(tag)
ti_prompts = []
ti_neg_prompts = []
for ti in textual_inversion_gui:
tokens = textual_inversion_dict.get(Path(ti).name, [Path(ti).stem.replace(",",""), False])
is_positive = tokens[1] == True or "positive" in Path(ti).parent.name
if is_positive: # positive prompt
ti_prompts.append(tokens[0])
else: # negative prompt (default)
ti_neg_prompts.append(tokens[0])
empty = [""]
prompt = ", ".join(prompts + ti_prompts + empty)
neg_prompt = ", ".join(neg_prompts + ti_neg_prompts + empty)
return gr.update(value=prompt), gr.update(value=neg_prompt),
def get_model_pipeline(repo_id: str):
api = HfApi(token=HF_TOKEN)
default = "StableDiffusionPipeline"
try:
if not is_repo_name(repo_id): return default
model = api.model_info(repo_id=repo_id, timeout=5.0)
except Exception:
return default
if model.private or model.gated: return default
tags = model.tags
if not 'diffusers' in tags: return default
if 'diffusers:FluxPipeline' in tags:
return "FluxPipeline"
if 'diffusers:StableDiffusionXLPipeline' in tags:
return "StableDiffusionXLPipeline"
elif 'diffusers:StableDiffusionPipeline' in tags:
return "StableDiffusionPipeline"
else:
return default
|