Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import torch | |
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler | |
import numpy as np | |
import os | |
import cv2 | |
from PIL import Image, ImageDraw | |
import insightface | |
from insightface.app import FaceAnalysis | |
# Diffusion | |
model_base = "runwayml/stable-diffusion-v1-5" | |
pipe = StableDiffusionPipeline.from_pretrained(model_base, torch_dtype=torch.float16, use_safetensors=True, safety_checker=None,) | |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) | |
lora_model_path = "./loralucy3/checkpoint-95000" | |
pipe.unet.load_attn_procs(lora_model_path) | |
pipe.to("cuda") | |
# Insightface model | |
app = FaceAnalysis(name='buffalo_l') | |
app.prepare(ctx_id=0, det_size=(640, 640)) | |
def face_swap(src_img, dest_img): | |
src_img = Image.open('./images/' + src_img + '.JPG') | |
# Convert to RGB | |
src_img = src_img.convert(mode='RGB') | |
dest_img = dest_img.convert(mode='RGB') | |
# Convert to array | |
src_img_arr = np.asarray(src_img) | |
dest_img_arr = np.asarray(dest_img) | |
# Face detection | |
src_faces = app.get(src_img_arr) | |
dest_faces = app.get(dest_img_arr) | |
# Initialize swapper | |
swapper = insightface.model_zoo.get_model('inswapper_128.onnx', download=False, download_zip=False) | |
# Swap face | |
res = dest_img_arr.copy() | |
for face in dest_faces: | |
res = swapper.get(res, face, src_faces[0], paste_back=True) | |
# Convert to PIL image | |
final_image = Image.fromarray(np.uint8(res)).convert('RGB') | |
return final_image | |
def greet(description,color,features,occasion,type_,face): | |
# Parse input | |
prompt = 'white background ' | |
description = 'description:' + description.replace(' ', '-') | |
color = ' color:' + ','.join(color) | |
features = ' features:' + ','.join(features) | |
occasion = ' occasion:' + ','.join(occasion) | |
type_ = ' type:' + ','.join(type_) | |
prompt += description + color + features + occasion + type_ | |
print('prompt:',prompt) | |
image = pipe( | |
prompt, | |
negative_prompt='deformed face,bad anatomy', | |
width=312, | |
height=512, | |
num_inference_steps=100, | |
guidance_scale=7.5, | |
cross_attention_kwargs={"scale": 1.0} | |
).images[0] | |
if(face != 'Normal'): | |
image = face_swap(face, image) | |
return image | |
iface = gr.Interface(fn=greet, | |
inputs=[gr.Textbox(label='Description'), | |
gr.Dropdown(label='Color',choices=['Beige','Black','Blue','Brown','Green','Grey','Orange','Pink','Purple','Red','White','Yellow'],multiselect=True), | |
gr.Dropdown(label='Features',choices=['3/4-sleeve','Babydoll','Closed-Back','Corset','Crochet','Cutouts','Draped','Floral','Gloves','Halter','Lace','Long','Long-Sleeve','Midi','No-Slit','Off-The-Shoulder','One-Shoulder','Open-Back','Pockets','Print','Puff-Sleeve','Ruched','Satin','Sequins','Shimmer','Short','Short-Sleeve','Side-Slit','Square-Neck','Strapless','Sweetheart-Neck','Tight','V-Neck','Velvet','Wrap'],multiselect=True), | |
gr.Dropdown(label='Occasion',choices=['Homecoming','Casual','Wedding-Guest','Festival','Sorority','Day','Vacation','Summer','Pool-Party','Birthday','Date-Night','Party','Holiday','Winter-Formal','Valentines-Day','Prom','Graduation'],multiselect=True), | |
gr.Dropdown(label='Type',choices=['Mini-Dresses','Midi-Dresses','Maxi-Dresses','Two-Piece-Sets','Rompers','Jeans','Jumpsuits','Pants','Tops','Jumpers/Cardigans','Skirts','Shorts','Bodysuits','Swimwear'],multiselect=True), | |
gr.Dropdown(label='Face',choices=['Normal','Cat','Lisa','Mila'], value='Normal'), | |
], | |
outputs=gr.Image(type="pil", label="Final Image", width=312, height=512)) | |
iface.launch() |