tonyassi's picture
Update app.py
854187b
raw
history blame
3.82 kB
import gradio as gr
import torch
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
import numpy as np
import os
import cv2
from PIL import Image, ImageDraw
import insightface
from insightface.app import FaceAnalysis
# Diffusion
model_base = "runwayml/stable-diffusion-v1-5"
pipe = StableDiffusionPipeline.from_pretrained(model_base, torch_dtype=torch.float16, use_safetensors=True, safety_checker=None,)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
lora_model_path = "./loralucy3/checkpoint-95000"
pipe.unet.load_attn_procs(lora_model_path)
pipe.to("cuda")
# Insightface model
app = FaceAnalysis(name='buffalo_l')
app.prepare(ctx_id=0, det_size=(640, 640))
def face_swap(src_img, dest_img):
src_img = Image.open('./images/' + src_img + '.JPG')
# Convert to RGB
src_img = src_img.convert(mode='RGB')
dest_img = dest_img.convert(mode='RGB')
# Convert to array
src_img_arr = np.asarray(src_img)
dest_img_arr = np.asarray(dest_img)
# Face detection
src_faces = app.get(src_img_arr)
dest_faces = app.get(dest_img_arr)
# Initialize swapper
swapper = insightface.model_zoo.get_model('inswapper_128.onnx', download=False, download_zip=False)
# Swap face
res = dest_img_arr.copy()
for face in dest_faces:
res = swapper.get(res, face, src_faces[0], paste_back=True)
# Convert to PIL image
final_image = Image.fromarray(np.uint8(res)).convert('RGB')
return final_image
def greet(description,color,features,occasion,type_,face):
# Parse input
prompt = 'white background '
description = 'description:' + description.replace(' ', '-')
color = ' color:' + ','.join(color)
features = ' features:' + ','.join(features)
occasion = ' occasion:' + ','.join(occasion)
type_ = ' type:' + ','.join(type_)
prompt += description + color + features + occasion + type_
print('prompt:',prompt)
image = pipe(
prompt,
negative_prompt='deformed face,bad anatomy',
width=312,
height=512,
num_inference_steps=100,
guidance_scale=7.5,
cross_attention_kwargs={"scale": 1.0}
).images[0]
if(face != 'Normal'):
image = face_swap(face, image)
return image
iface = gr.Interface(fn=greet,
inputs=[gr.Textbox(label='Description'),
gr.Dropdown(label='Color',choices=['Beige','Black','Blue','Brown','Green','Grey','Orange','Pink','Purple','Red','White','Yellow'],multiselect=True),
gr.Dropdown(label='Features',choices=['3/4-sleeve','Babydoll','Closed-Back','Corset','Crochet','Cutouts','Draped','Floral','Gloves','Halter','Lace','Long','Long-Sleeve','Midi','No-Slit','Off-The-Shoulder','One-Shoulder','Open-Back','Pockets','Print','Puff-Sleeve','Ruched','Satin','Sequins','Shimmer','Short','Short-Sleeve','Side-Slit','Square-Neck','Strapless','Sweetheart-Neck','Tight','V-Neck','Velvet','Wrap'],multiselect=True),
gr.Dropdown(label='Occasion',choices=['Homecoming','Casual','Wedding-Guest','Festival','Sorority','Day','Vacation','Summer','Pool-Party','Birthday','Date-Night','Party','Holiday','Winter-Formal','Valentines-Day','Prom','Graduation'],multiselect=True),
gr.Dropdown(label='Type',choices=['Mini-Dresses','Midi-Dresses','Maxi-Dresses','Two-Piece-Sets','Rompers','Jeans','Jumpsuits','Pants','Tops','Jumpers/Cardigans','Skirts','Shorts','Bodysuits','Swimwear'],multiselect=True),
gr.Dropdown(label='Face',choices=['Normal','Cat','Lisa','Mila'], value='Normal'),
],
outputs=gr.Image(type="pil", label="Final Image", width=312, height=512))
iface.launch()