Spaces:
Sleeping
Sleeping
File size: 4,753 Bytes
d8795ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
import os
from PIL import Image
from transformers import ViTFeatureExtractor, ViTForImageClassification
import warnings
import requests
import gradio as gr
import logging
from PIL import Image
from transformers import ViTFeatureExtractor, ViTForImageClassification
import warnings
import requests
import gradio as gr
warnings.filterwarnings('ignore')
# Load the pre-trained Vision Transformer model and feature extractor
model_name = "google/vit-base-patch16-224"
feature_extractor = ViTFeatureExtractor.from_pretrained(model_name)
model = ViTForImageClassification.from_pretrained(model_name)
# API key for the nutrition information
api_key = 'TByvWJjRBllCH+fV+9vupw==8I4fm0WKBpn8VIsc'
def identify_image(image_path):
"""Identify the food item in the image."""
image = Image.open(image_path)
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
predicted_class_idx = logits.argmax(-1).item()
predicted_label = model.config.id2label[predicted_class_idx]
food_name = predicted_label.split(',')[0]
return food_name
def get_calories(food_name):
"""Get the calorie information of the identified food item."""
api_url = 'https://api.api-ninjas.com/v1/nutrition?query={}'.format(food_name)
response = requests.get(api_url, headers={'X-Api-Key': api_key})
if response.status_code == requests.codes.ok:
nutrition_info = response.json()
else:
nutrition_info = {"Error": response.status_code, "Message": response.text}
return nutrition_info
def format_nutrition_info(nutrition_info):
"""Format the nutritional information into an HTML table."""
if "Error" in nutrition_info:
return f"Error: {nutrition_info['Error']} - {nutrition_info['Message']}"
if len(nutrition_info) == 0:
return "No nutritional information found."
nutrition_data = nutrition_info[0]
table = f"""
<table border="1" style="width: 100%; border-collapse: collapse;">
<tr><th colspan="4" style="text-align: center;"><b>Nutrition Facts</b></th></tr>
<tr><td colspan="4" style="text-align: center;"><b>Food Name: {nutrition_data['name']}</b></td></tr>
<tr>
<td style="text-align: left;"><b>Calories</b></td><td style="text-align: right;">{nutrition_data['calories']}</td>
<td style="text-align: left;"><b>Serving Size (g)</b></td><td style="text-align: right;">{nutrition_data['serving_size_g']}</td>
</tr>
<tr>
<td style="text-align: left;"><b>Total Fat (g)</b></td><td style="text-align: right;">{nutrition_data['fat_total_g']}</td>
<td style="text-align: left;"><b>Saturated Fat (g)</b></td><td style="text-align: right;">{nutrition_data['fat_saturated_g']}</td>
</tr>
<tr>
<td style="text-align: left;"><b>Protein (g)</b></td><td style="text-align: right;">{nutrition_data['protein_g']}</td>
<td style="text-align: left;"><b>Sodium (mg)</b></td><td style="text-align: right;">{nutrition_data['sodium_mg']}</td>
</tr>
<tr>
<td style="text-align: left;"><b>Potassium (mg)</b></td><td style="text-align: right;">{nutrition_data['potassium_mg']}</td>
<td style="text-align: left;"><b>Cholesterol (mg)</b></td><td style="text-align: right;">{nutrition_data['cholesterol_mg']}</td>
</tr>
<tr>
<td style="text-align: left;"><b>Total Carbohydrates (g)</b></td><td style="text-align: right;">{nutrition_data['carbohydrates_total_g']}</td>
<td style="text-align: left;"><b>Fiber (g)</b></td><td style="text-align: right;">{nutrition_data['fiber_g']}</td>
</tr>
<tr>
<td style="text-align: left;"><b>Sugar (g)</b></td><td style="text-align: right;">{nutrition_data['sugar_g']}</td>
<td></td><td></td>
</tr>
</table>
"""
return table
def main_process(image_path):
"""Identify the food item and fetch its calorie information."""
food_name = identify_image(image_path)
nutrition_info = get_calories(food_name)
formatted_nutrition_info = format_nutrition_info(nutrition_info)
return formatted_nutrition_info
# Define the Gradio interface
def gradio_interface(image):
formatted_nutrition_info = main_process(image)
return formatted_nutrition_info
# Create the Gradio UI
iface = gr.Interface(
fn=gradio_interface,
inputs=gr.Image(type="filepath"),
outputs="html",
title="Food Identification and Nutrition Info",
description="Upload an image of food to get nutritional information.",
allow_flagging="never" # Disable flagging
)
# Launch the Gradio app
if __name__ == "__main__":
iface.launch()
|