Spaces:
Sleeping
Sleeping
import os | |
from PIL import Image | |
from transformers import ViTFeatureExtractor, ViTForImageClassification | |
import warnings | |
import requests | |
import gradio as gr | |
import logging | |
warnings.filterwarnings('ignore') | |
# Configure logging | |
logging.basicConfig(level=logging.INFO) | |
# Load the pre-trained Vision Transformer model and feature extractor | |
model_name = "google/vit-base-patch16-224" | |
feature_extractor = ViTFeatureExtractor.from_pretrained(model_name) | |
model = ViTForImageClassification.from_pretrained(model_name) | |
# Load the API key from environment variables | |
api_key = os.getenv('NUTRITION_API_KEY') | |
if not api_key: | |
logging.error("API key for nutrition information is not set.") | |
raise ValueError("API key for nutrition information is not set. Please set the NUTRITION_API_KEY environment variable.") | |
def identify_image(image_path): | |
"""Identify the food item in the image.""" | |
try: | |
image = Image.open(image_path) | |
except Exception as e: | |
logging.error(f"Failed to open image: {e}") | |
return "Invalid image" | |
inputs = feature_extractor(images=image, return_tensors="pt") | |
outputs = model(**inputs) | |
logits = outputs.logits | |
predicted_class_idx = logits.argmax(-1).item() | |
predicted_label = model.config.id2label[predicted_class_idx] | |
food_name = predicted_label.split(',')[0] | |
logging.info(f"Identified food: {food_name}") | |
return food_name | |
def get_calories(food_name): | |
"""Get the calorie information of the identified food item.""" | |
api_url = f'https://api.api-ninjas.com/v1/nutrition?query={food_name}' | |
try: | |
response = requests.get(api_url, headers={'X-Api-Key': api_key}) | |
response.raise_for_status() | |
nutrition_info = response.json() | |
except requests.RequestException as e: | |
logging.error(f"API request failed: {e}") | |
nutrition_info = {"Error": response.status_code, "Message": str(e)} | |
return nutrition_info | |
def format_nutrition_info(nutrition_info): | |
"""Format the nutritional information into an HTML table.""" | |
if "Error" in nutrition_info: | |
return f"Error: {nutrition_info['Error']} - {nutrition_info['Message']}" | |
if not nutrition_info: | |
return "No nutritional information found." | |
nutrition_data = nutrition_info[0] | |
table = f""" | |
<table border="1" style="width: 100%; border-collapse: collapse;"> | |
<tr><th colspan="4" style="text-align: center;"><b>Nutrition Facts</b></th></tr> | |
<tr><td colspan="4" style="text-align: center;"><b>Food Name: {nutrition_data['name']}</b></td></tr> | |
<tr> | |
<td style="text-align: left;"><b>Calories</b></td><td style="text-align: right;">{nutrition_data['calories']}</td> | |
<td style="text-align: left;"><b>Serving Size (g)</b></td><td style="text-align: right;">{nutrition_data['serving_size_g']}</td> | |
</tr> | |
<tr> | |
<td style="text-align: left;"><b>Total Fat (g)</b></td><td style="text-align: right;">{nutrition_data['fat_total_g']}</td> | |
<td style="text-align: left;"><b>Saturated Fat (g)</b></td><td style="text-align: right;">{nutrition_data['fat_saturated_g']}</td> | |
</tr> | |
<tr> | |
<td style="text-align: left;"><b>Protein (g)</b></td><td style="text-align: right;">{nutrition_data['protein_g']}</td> | |
<td style="text-align: left;"><b>Sodium (mg)</b></td><td style="text-align: right;">{nutrition_data['sodium_mg']}</td> | |
</tr> | |
<tr> | |
<td style="text-align: left;"><b>Potassium (mg)</b></td><td style="text-align: right;">{nutrition_data['potassium_mg']}</td> | |
<td style="text-align: left;"><b>Cholesterol (mg)</b></td><td style="text-align: right;">{nutrition_data['cholesterol_mg']}</td> | |
</tr> | |
<tr> | |
<td style="text-align: left;"><b>Total Carbohydrates (g)</b></td><td style="text-align: right;">{nutrition_data['carbohydrates_total_g']}</td> | |
<td style="text-align: left;"><b>Fiber (g)</b></td><td style="text-align: right;">{nutrition_data['fiber_g']}</td> | |
</tr> | |
<tr> | |
<td style="text-align: left;"><b>Sugar (g)</b></td><td style="text-align: right;">{nutrition_data['sugar_g']}</td> | |
<td></td><td></td> | |
</tr> | |
</table> | |
""" | |
return table | |
def main_process(image_path): | |
"""Identify the food item and fetch its calorie information.""" | |
food_name = identify_image(image_path) | |
if food_name == "Invalid image": | |
return food_name | |
nutrition_info = get_calories(food_name) | |
formatted_nutrition_info = format_nutrition_info(nutrition_info) | |
return formatted_nutrition_info | |
# Define the Gradio interface | |
def gradio_interface(image): | |
formatted_nutrition_info = main_process(image) | |
return formatted_nutrition_info | |
# Create the Gradio UI | |
iface = gr.Interface( | |
fn=gradio_interface, | |
inputs=gr.Image(type="filepath"), | |
outputs="html", | |
title="Food Identification and Nutrition Info", | |
description="Upload an image of food to get nutritional information.", | |
allow_flagging="never" # Disable flagging | |
) | |
# Launch the Gradio app | |
if __name__ == "__main__": | |
iface.launch() | |