regressiontest / app.py
universalml's picture
Upload app.py with huggingface_hub
b66416d verified
raw
history blame
1.92 kB
from sklearn.preprocessing import LabelEncoder
from huggingface_hub import hf_hub_download
import pandas as pd
import gradio as gr
import joblib
MODEL_NAME = "regressiontest"
HF_USER = "universalml"
REPO_ID = HF_USER + "/" + MODEL_NAME
MODEL = joblib.load(hf_hub_download(repo_id=REPO_ID, filename="model.joblib"))
SCALER = joblib.load(hf_hub_download(repo_id=REPO_ID, filename="scaler.joblib"))
def encode_categorical_columns(data_frame):
label_encoder = LabelEncoder()
ordinal_columns = data_frame.select_dtypes(include=['object']).columns
for col in ordinal_columns:
data_frame[col] = label_encoder.fit_transform(data_frame[col])
nominal_columns = data_frame.select_dtypes(include=['object']).columns.difference(ordinal_columns)
data_frame = pd.get_dummies(data_frame, columns=nominal_columns, drop_first=True)
return data_frame
def prediction_function(*args):
values_list = []
for arg in args:
values_list.append(int(arg))
input_data_frame = pd.DataFrame([values_list], columns=MODEL.data)
data_frame = encode_categorical_columns(input_data_frame)
scaled_input = SCALER.transform(data_frame)
prediction_result = MODEL.predict(scaled_input)[0]
return prediction_result
def regression_inputs():
input_labels = MODEL.data
inputs = []
for input_label in input_labels:
value = gr.Textbox(label=input_label, type="text")
inputs.append(value)
return inputs
def regression_output():
output_label = MODEL.target
output = gr.Textbox(label=output_label, type="text")
return output
def create_interface():
interface = gr.Interface(
fn=prediction_function,
inputs=regression_inputs(),
outputs=regression_output(),
title=MODEL_NAME,
)
interface.launch(debug=True)
create_interface()