Spaces:
Runtime error
Runtime error
import os | |
from threading import Thread | |
from typing import Iterator | |
import gradio as gr | |
from gradio.themes.base import Base | |
from gradio.themes.utils import colors, sizes, fonts | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
MAX_MAX_NEW_TOKENS = 2048 | |
DEFAULT_MAX_NEW_TOKENS = 1024 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
model_id = "ussipan/SipanGPT-0.2-Llama-3.2-1B-GGUF" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
device_map="auto", | |
torch_dtype=torch.bfloat16, | |
) | |
model.eval() | |
# Main Gradio inference function | |
def generate( | |
message: str, | |
chat_history: list[tuple[str, str]], | |
max_new_tokens: int = 1024, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2, | |
) -> Iterator[str]: | |
conversation = [{k: v for k, v in d.items() if k != 'metadata'} for d in chat_history] | |
conversation.append({"role": "user", "content": message}) | |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Se recortó la entrada de la conversación porque era más larga que {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
{"input_ids": input_ids}, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
num_beams=1, | |
repetition_penalty=repetition_penalty, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
conversation.append({"role": "assistant", "content": ""}) | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
bot_response = "".join(outputs) | |
conversation[-1]['content'] = bot_response | |
yield "", conversation | |
# Implementing Gradio 5 features and building a ChatInterface UI yourself | |
PLACEHOLDER = """<div style="padding: 20px; text-align: center; display: flex; flex-direction: column; align-items: center;"> | |
<img src="https://corladlalibertad.org.pe/wp-content/uploads/2024/01/USS.jpg" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55; margin-bottom: 10px;"> | |
<h1 style="font-size: 28px; margin: 0;">SipánGPT 0.2 Llama 3.2</h1> | |
<p style="font-size: 8px; margin: 5px 0 0; opacity: 0.65;"> | |
<a href="https://huggingface.co/spaces/ysharma/Llama3-2_with_Gradio-5" target="_blank" style="color: inherit; text-decoration: none;">Forked from @ysharma</a> | |
</p> | |
<p style="font-size: 12px; margin: 5px 0 0; opacity: 0.9;">Este modelo es experimental, puede generar alucinaciones o respuestas incorrectas.</p> | |
<p style="font-size: 12px; margin: 5px 0 0; opacity: 0.9;">Entrenado con un dataset de 5.4k conversaciones.</p> | |
<p style="font-size: 12px; margin: 5px 0 0; opacity: 0.9;"> | |
<a href="https://huggingface.co/datasets/ussipan/sipangpt" target="_blank" style="color: inherit; text-decoration: none;">Ver el dataset aquí</a> | |
</p> | |
</div>""" | |
def handle_retry(history, retry_data: gr.RetryData): | |
new_history = history[:retry_data.index] | |
previous_prompt = history[retry_data.index]['content'] | |
yield from generate(previous_prompt, chat_history = new_history, max_new_tokens = 1024, temperature = 0.6, top_p = 0.9, top_k = 50, repetition_penalty = 1.2) | |
def handle_like(data: gr.LikeData): | |
if data.liked: | |
print("Votaste positivamente esta respuesta: ", data.value) | |
else: | |
print("Votaste negativamente esta respuesta: ", data.value) | |
def handle_undo(history, undo_data: gr.UndoData): | |
chatbot = history[:undo_data.index] | |
prompt = history[undo_data.index]['content'] | |
return chatbot, prompt | |
def chat_examples_fill(data: gr.SelectData): | |
yield from generate(data.value['text'], chat_history = [], max_new_tokens = 1024, temperature = 0.6, top_p = 0.9, top_k = 50, repetition_penalty = 1.2) | |
class SipanGPTTheme(Base): | |
def __init__( | |
self, | |
*, | |
primary_hue: colors.Color | str = colors.Color( | |
name="custom_green", | |
c50="#f0fde4", | |
c100="#e1fbc8", | |
c200="#c3f789", | |
c300="#a5f34a", | |
c400="#7dfa00", # primary color | |
c500="#5ef000", | |
c600="#4cc700", | |
c700="#39a000", | |
c800="#2b7900", | |
c900="#1d5200", | |
c950="#102e00", | |
), | |
secondary_hue: colors.Color | str = colors.Color( | |
name="custom_secondary_green", | |
c50="#edfce0", | |
c100="#dbf9c1", | |
c200="#b7f583", | |
c300="#93f145", | |
c400="#5fed00", # secondary color | |
c500="#4ed400", | |
c600="#3fad00", | |
c700="#308700", | |
c800="#236100", | |
c900="#153b00", | |
c950="#0a1f00", | |
), | |
neutral_hue: colors.Color | str = colors.gray, | |
spacing_size: sizes.Size | str = sizes.spacing_md, | |
radius_size: sizes.Size | str = sizes.radius_md, | |
text_size: sizes.Size | str = sizes.text_md, | |
font: fonts.Font | str | list[fonts.Font | str] = ( | |
fonts.GoogleFont("Exo 2"), | |
"ui-sans-serif", | |
"system-ui", | |
"sans-serif", | |
), | |
font_mono: fonts.Font | str | list[fonts.Font | str] = ( | |
fonts.GoogleFont("Fraunces"), | |
"ui-monospace", | |
"monospace", | |
), | |
): | |
super().__init__( | |
primary_hue=primary_hue, | |
secondary_hue=secondary_hue, | |
neutral_hue=neutral_hue, | |
spacing_size=spacing_size, | |
radius_size=radius_size, | |
text_size=text_size, | |
font=font, | |
font_mono=font_mono, | |
) | |
self.set( | |
body_background_fill="#333333", | |
body_background_fill_dark="#333333", | |
body_text_color="#ffffff", | |
body_text_color_dark="#ffffff", | |
color_accent_soft="*secondary_200", | |
button_primary_background_fill="*primary_400", | |
button_primary_background_fill_hover="*primary_500", | |
button_primary_text_color="#333333", | |
button_primary_text_color_dark="#333333", | |
block_title_text_color="*primary_400", | |
block_title_text_color_dark="*primary_400", | |
input_background_fill="#444444", | |
input_background_fill_dark="#444444", | |
input_border_color="#555555", | |
input_border_color_dark="#555555", | |
input_placeholder_color="#888888", | |
input_placeholder_color_dark="#888888", | |
) | |
# Uso del tema | |
theme = SipanGPTTheme() | |
with gr.Blocks(theme=theme, fill_height=True) as demo: | |
with gr.Column(elem_id="container", scale=1): | |
chatbot = gr.Chatbot( | |
label="SipánGPT 0.2 Llama 3.2", | |
show_label=False, | |
type="messages", | |
scale=1, | |
suggestions = [ | |
{"text": "Háblame del reglamento de estudiantes de la universidad"}, | |
{"text": "Qué becas ofrece la universidad"}, | |
], | |
placeholder = PLACEHOLDER, | |
) | |
msg = gr.Textbox(submit_btn=True, show_label=False) | |
with gr.Accordion('Additional inputs', open=False): | |
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ) | |
temperature = gr.Slider(label="Temperature",minimum=0.1, maximum=4.0, step=0.1, value=0.6,) | |
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9, ) | |
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50, ) | |
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2, ) | |
msg.submit(generate, [msg, chatbot, max_new_tokens, temperature, top_p, top_k, repetition_penalty], [msg, chatbot]) | |
chatbot.retry(handle_retry, chatbot, [msg, chatbot]) | |
chatbot.like(handle_like, None, None) | |
chatbot.undo(handle_undo, chatbot, [chatbot, msg]) | |
chatbot.suggestion_select(chat_examples_fill, None, [msg, chatbot] ) | |
demo.launch() |