File size: 12,701 Bytes
d8cf478
 
f95e119
d8cf478
 
 
 
8db40cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18ab870
1ed82ec
 
8db40cd
1ed82ec
 
18ab870
d8cf478
 
efabdf9
d8cf478
 
efabdf9
 
d8cf478
1ed82ec
cd2003a
 
1ed82ec
 
 
 
8db40cd
 
 
a0ba53d
efabdf9
a042cec
18ab870
0e538d2
18ab870
 
a042cec
 
d8cf478
a0ba53d
d8cf478
 
 
a042cec
d8cf478
a042cec
 
efabdf9
a0ba53d
efabdf9
d8cf478
 
efabdf9
18ab870
 
8db40cd
18ab870
 
1ed82ec
efabdf9
 
 
3035b84
d8cf478
efabdf9
 
 
 
d8cf478
efabdf9
d8cf478
efabdf9
d8cf478
 
efabdf9
 
d8cf478
1ed82ec
8db40cd
 
 
 
 
1ed82ec
efabdf9
d8cf478
 
efabdf9
8db40cd
 
 
 
 
d8cf478
 
 
 
1ed82ec
 
8db40cd
1ed82ec
 
 
d8cf478
 
 
 
 
 
 
1ed82ec
 
8db40cd
1ed82ec
 
 
d8cf478
 
 
 
 
 
 
1ed82ec
 
8db40cd
1ed82ec
 
 
d8cf478
 
 
 
 
 
d41146f
 
 
efabdf9
8db40cd
 
 
 
d41146f
 
efabdf9
 
8db40cd
 
 
 
 
d41146f
efabdf9
18ab870
efabdf9
 
d41146f
efabdf9
 
8db40cd
 
 
 
 
d41146f
efabdf9
 
 
 
 
 
8db40cd
 
 
 
 
d41146f
efabdf9
 
 
 
d41146f
d8cf478
 
 
3ed8c7a
 
 
 
 
 
 
 
 
6154c13
3ed8c7a
 
 
 
 
6154c13
 
d8cf478
8db40cd
 
 
 
d8cf478
efabdf9
 
d8cf478
5b74576
f95e119
 
d8cf478
f95e119
 
 
5b74576
d8cf478
5b74576
d8cf478
 
efabdf9
1ed82ec
 
8db40cd
1ed82ec
 
3035b84
5b74576
efabdf9
8db40cd
 
 
efabdf9
5b74576
 
efabdf9
8db40cd
 
 
efabdf9
 
d8cf478
 
 
 
efabdf9
5b74576
18ab870
 
d8cf478
efabdf9
 
d8cf478
18ab870
5b74576
efabdf9
5b74576
efabdf9
5b74576
efabdf9
 
 
18ab870
 
 
3035b84
5b74576
18ab870
 
 
5b74576
 
18ab870
 
 
efabdf9
a042cec
d8cf478
6154c13
 
 
211cb3f
6154c13
 
211cb3f
 
 
 
 
 
3ed8c7a
 
 
211cb3f
3ed8c7a
 
211cb3f
5b74576
211cb3f
 
 
 
7839697
211cb3f
 
3ed8c7a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import pandas as pd
from tqdm import tqdm
from scripts.utils import get_next_week

DEFAULT_MECH_FEE = 0.01  # xDAI


def get_weekly_total_mech_calls(
    trader_data: pd.DataFrame, all_mech_calls_df: pd.DataFrame
) -> int:
    """Function to compute the total weekly number of mech calls for all markets
    that the trader bet upon"""

    trading_weeks = trader_data.month_year_week.unique()
    trader_address = trader_data.trader_address.unique()[0]
    if len(trading_weeks) > 1:
        raise ValueError("The trader data should contain only one week information")
    trading_week = trading_weeks[0]
    try:
        return all_mech_calls_df.loc[
            (all_mech_calls_df["trader_address"] == trader_address)
            & (all_mech_calls_df["month_year_week"] == trading_week),
            "total_mech_calls",
        ].iloc[0]
    except Exception as e:
        print(
            f"Error getting the number of mech calls for the trader {trader_address} and week {trading_week}"
        )
        return 280  # average number 40 mech calls in 7 days


def compute_metrics(
    trader_address: str,
    trader_data: pd.DataFrame,
    all_mech_calls: pd.DataFrame,
    live_metrics: bool = False,
    unknown_trader: bool = False,
) -> dict:

    if len(trader_data) == 0:
        # print("No data to compute metrics")
        return {}

    agg_metrics = {}
    agg_metrics["trader_address"] = trader_address
    total_bet_amounts = trader_data.collateral_amount.sum()
    if live_metrics:
        # the total is already computed in daily_info per trader address and trading day
        total_nr_mech_calls_all_markets = trader_data["num_mech_calls"].iloc[0]
    elif unknown_trader:
        # num of mech calls is always zero
        total_nr_mech_calls_all_markets = 0
    else:
        total_nr_mech_calls_all_markets = get_weekly_total_mech_calls(
            trader_data=trader_data, all_mech_calls_df=all_mech_calls
        )

    agg_metrics["bet_amount"] = total_bet_amounts
    agg_metrics["nr_mech_calls"] = total_nr_mech_calls_all_markets
    agg_metrics["staking"] = trader_data.iloc[0].staking
    agg_metrics["nr_trades"] = len(trader_data)
    if live_metrics:
        return agg_metrics
    total_earnings = trader_data.earnings.sum()
    agg_metrics["earnings"] = total_earnings
    total_fee_amounts = trader_data.mech_fee_amount.sum()

    total_costs = (
        total_bet_amounts
        + total_fee_amounts
        + (total_nr_mech_calls_all_markets * DEFAULT_MECH_FEE)
    )
    total_net_earnings = total_earnings - total_costs
    agg_metrics["net_earnings"] = total_net_earnings
    agg_metrics["roi"] = total_net_earnings / total_costs

    return agg_metrics


def compute_trader_metrics_by_market_creator(
    trader_address: str,
    traders_data: pd.DataFrame,
    all_mech_calls: pd.DataFrame,
    market_creator: str = "all",
    live_metrics: bool = False,
    unknown_trader: bool = False,
) -> dict:
    """This function computes for a specific time window (week or day) the different metrics:
    roi, net_earnings, earnings, bet_amount, nr_mech_calls and nr_trades.
    The global roi of the trader by computing the individual net profit and the individual costs values
    achieved per market and dividing both.
    It is possible to filter by market creator: quickstart, pearl, all"""
    assert "market_creator" in traders_data.columns
    filtered_traders_data = traders_data.loc[
        traders_data["trader_address"] == trader_address
    ]
    if market_creator != "all":  # compute only for the specific market creator
        filtered_traders_data = filtered_traders_data.loc[
            filtered_traders_data["market_creator"] == market_creator
        ]
        if len(filtered_traders_data) == 0:
            # tqdm.write(f"No data. Skipping market creator {market_creator}")
            return {}  # No Data

    metrics = compute_metrics(
        trader_address,
        filtered_traders_data,
        all_mech_calls,
        live_metrics,
        unknown_trader,
    )
    return metrics


def merge_trader_weekly_metrics(
    trader: str,
    weekly_data: pd.DataFrame,
    all_mech_calls: pd.DataFrame,
    week: str,
    unknown_trader: bool = False,
) -> pd.DataFrame:
    trader_metrics = []
    # computation as specification 1 for all types of markets
    weekly_metrics_all = compute_trader_metrics_by_market_creator(
        trader,
        weekly_data,
        all_mech_calls=all_mech_calls,
        market_creator="all",
        live_metrics=False,
        unknown_trader=unknown_trader,
    )
    weekly_metrics_all["month_year_week"] = week
    weekly_metrics_all["market_creator"] = "all"
    trader_metrics.append(weekly_metrics_all)

    # computation as specification 1 for quickstart markets
    weekly_metrics_qs = compute_trader_metrics_by_market_creator(
        trader,
        weekly_data,
        all_mech_calls=all_mech_calls,
        market_creator="quickstart",
        live_metrics=False,
        unknown_trader=unknown_trader,
    )
    if len(weekly_metrics_qs) > 0:
        weekly_metrics_qs["month_year_week"] = week
        weekly_metrics_qs["market_creator"] = "quickstart"
        trader_metrics.append(weekly_metrics_qs)
    # computation as specification 1 for pearl markets
    weekly_metrics_pearl = compute_trader_metrics_by_market_creator(
        trader,
        weekly_data,
        all_mech_calls=all_mech_calls,
        market_creator="pearl",
        live_metrics=False,
        unknown_trader=unknown_trader,
    )
    if len(weekly_metrics_pearl) > 0:
        weekly_metrics_pearl["month_year_week"] = week
        weekly_metrics_pearl["market_creator"] = "pearl"
        trader_metrics.append(weekly_metrics_pearl)
    result = pd.DataFrame.from_dict(trader_metrics, orient="columns")
    return result


def merge_trader_daily_metrics(
    trader: str,
    daily_data: pd.DataFrame,
    day: str,
    live_metrics: bool = False,
) -> pd.DataFrame:
    trader_metrics = []
    # computation as specification 1 for all types of markets
    daily_metrics_all = compute_trader_metrics_by_market_creator(
        trader,
        daily_data,
        all_mech_calls=None,
        market_creator="all",
        live_metrics=live_metrics,
    )
    daily_metrics_all["creation_date"] = day
    # staking label is at the trader level
    daily_metrics_all["market_creator"] = "all"
    trader_metrics.append(daily_metrics_all)

    # computation as specification 1 for quickstart markets
    daily_metrics_qs = compute_trader_metrics_by_market_creator(
        trader,
        daily_data,
        all_mech_calls=None,
        market_creator="quickstart",
        live_metrics=live_metrics,
    )
    if len(daily_metrics_qs) > 0:
        daily_metrics_qs["creation_date"] = day
        daily_metrics_qs["market_creator"] = "quickstart"
        trader_metrics.append(daily_metrics_qs)
    # computation as specification 1 for pearl markets
    daily_metrics_pearl = compute_trader_metrics_by_market_creator(
        trader,
        daily_data,
        all_mech_calls=None,
        market_creator="pearl",
        live_metrics=live_metrics,
    )
    if len(daily_metrics_pearl) > 0:
        daily_metrics_pearl["creation_date"] = day
        daily_metrics_pearl["market_creator"] = "pearl"
        trader_metrics.append(daily_metrics_pearl)
    result = pd.DataFrame.from_dict(trader_metrics, orient="columns")
    return result


def win_metrics_trader_level(weekly_data):
    winning_trades = (
        weekly_data.groupby(
            ["month_year_week", "market_creator", "trader_address"], sort=False
        )["winning_trade"].sum()
        / weekly_data.groupby(
            ["month_year_week", "market_creator", "trader_address"], sort=False
        )["winning_trade"].count()
        * 100
    )
    # winning_trades is a series, give it a dataframe
    winning_trades = winning_trades.reset_index()
    winning_trades.columns = winning_trades.columns.astype(str)
    winning_trades.rename(columns={"winning_trade": "winning_perc"}, inplace=True)
    return winning_trades


def compute_weekly_metrics_by_market_creator(
    traders_data: pd.DataFrame,
    all_mech_calls: pd.DataFrame,
    trader_filter: str = None,
    unknown_trader: bool = False,
) -> pd.DataFrame:
    """Function to compute the metrics at the trader level per week
    and with different categories by market creator"""
    contents = []
    all_weeks = list(traders_data.month_year_week.unique())
    next_week = get_next_week()
    print(f"next week = {next_week}")
    for week in all_weeks:
        # skip the next week since data is not complete
        if week == next_week:
            continue
        weekly_data = traders_data.loc[traders_data["month_year_week"] == week]
        print(f"Computing weekly metrics for week ={week} by market creator")
        # traverse each trader
        traders = list(weekly_data.trader_address.unique())
        for trader in tqdm(traders, desc=f"Trader' metrics", unit="metrics"):
            if trader_filter is None:
                contents.append(
                    merge_trader_weekly_metrics(
                        trader, weekly_data, all_mech_calls, week, unknown_trader
                    )
                )
            elif trader_filter == "Olas":
                filtered_data = weekly_data.loc[weekly_data["staking"] != "non_Olas"]
                contents.append(
                    merge_trader_weekly_metrics(
                        trader, filtered_data, all_mech_calls, week
                    )
                )
            else:  # non_Olas traders
                filtered_data = weekly_data.loc[weekly_data["staking"] == "non_Olas"]
                contents.append(
                    merge_trader_weekly_metrics(
                        trader, filtered_data, all_mech_calls, week
                    )
                )

    print("End computing all weekly metrics by market creator")
    return pd.concat(contents, ignore_index=True)


def compute_daily_metrics_by_market_creator(
    traders_data: pd.DataFrame,
    trader_filter: str = None,
    live_metrics: bool = False,
) -> pd.DataFrame:
    """Function to compute the metrics at the trader level per day
    and with different categories by market creator"""
    contents = []

    all_days = list(traders_data.creation_date.unique())
    for day in all_days:
        daily_data = traders_data.loc[traders_data["creation_date"] == day]
        print(f"Computing daily metrics for {day}")
        # traverse each trader
        traders = list(daily_data.trader_address.unique())
        for trader in tqdm(traders, desc=f"Trader' daily metrics", unit="metrics"):
            if trader_filter is None:
                contents.append(
                    merge_trader_daily_metrics(trader, daily_data, day, live_metrics)
                )
            elif trader_filter == "Olas":
                filtered_data = daily_data.loc[daily_data["staking"] != "non_Olas"]
                contents.append(
                    merge_trader_daily_metrics(trader, filtered_data, day, live_metrics)
                )
            else:  # non_Olas traders
                filtered_data = daily_data.loc[daily_data["staking"] == "non_Olas"]
                contents.append(
                    merge_trader_daily_metrics(trader, filtered_data, day, live_metrics)
                )
    print("End computing all daily metrics by market creator")
    print(f"length of contents = {len(contents)}")
    return pd.concat(contents, ignore_index=True)


def compute_winning_metrics_by_trader(
    traders_data: pd.DataFrame, unknown_info: pd.DataFrame, trader_filter: str = None
) -> pd.DataFrame:
    """Function to compute the winning metrics at the trader level per week and with different market creators"""
    if len(unknown_info) > 0:
        all_data = pd.concat([traders_data, unknown_info], axis=0)
    else:
        all_data = traders_data

    market_all = all_data.copy(deep=True)
    market_all["market_creator"] = "all"

    # merging both dataframes
    final_traders = pd.concat([market_all, all_data], ignore_index=True)
    final_traders = final_traders.sort_values(by="creation_timestamp", ascending=True)

    if trader_filter == "non_Olas":  # non_Olas
        final_traders = final_traders.loc[final_traders["staking"] == "non_Olas"]
    elif trader_filter == "Olas":
        final_traders = final_traders.loc[final_traders["staking"] != "non_Olas"]
    else:  # all traders
        print("No filtering")

    if len(final_traders) == 0:
        return pd.DataFrame()
    winning_df = win_metrics_trader_level(final_traders)
    winning_df.head()
    return winning_df