File size: 6,651 Bytes
51a7d9e
 
c4c656e
2426b1b
51a7d9e
65c31d6
c4c656e
51a7d9e
 
c4c656e
ba2710b
c4c656e
e3939ea
c4c656e
 
0a38613
c4c656e
2fec857
2426b1b
c4c656e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3939ea
 
 
c4c656e
e3939ea
c4c656e
 
b42e029
c4c656e
51a7d9e
c4c656e
 
 
3b9cb87
ca4f0a9
c4c656e
 
 
e3939ea
 
 
c4c656e
bbc7f7f
 
 
c4c656e
 
 
e3939ea
2fec857
fca0518
edb9e8a
0a38613
c4c656e
51a7d9e
 
1fc0e10
 
51a7d9e
 
4e2bf05
9ad1f27
4e2bf05
9ad1f27
c9792bc
51a7d9e
c4c656e
 
 
 
 
 
 
 
 
 
 
e3939ea
 
4ce199e
e7fb870
e3939ea
6033503
 
a983a99
6033503
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51a7d9e
c4c656e
 
 
 
 
 
 
 
 
 
6033503
c4c656e
 
6033503
c4c656e
 
bbc7f7f
c4c656e
 
 
 
 
 
 
51a7d9e
 
c4c656e
51a7d9e
c4c656e
bbc7f7f
 
 
 
 
 
 
 
 
 
 
 
 
 
e3939ea
 
 
bd46fef
 
e3939ea
 
 
4ce199e
 
bd46fef
e3939ea
 
fca0518
c4c656e
 
9a280a4
 
 
c4c656e
 
 
 
 
9a280a4
c4c656e
 
 
 
4ce199e
 
b16d982
e3939ea
51a7d9e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import torch
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer
import os
import re
from polyglot.detect import Detector

HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL = "LLaMAX/LLaMAX3-8B-Alpaca"
RELATIVE_MODEL="LLaMAX/LLaMAX3-8B"

TITLE = "<h1><center>LLaMAX3-Translator</center></h1>"


model = AutoModelForCausalLM.from_pretrained(
        MODEL,
        torch_dtype=torch.float16,
        device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(MODEL)


def lang_detector(text):
    min_chars = 5
    if len(text) < min_chars:
        return "Input text too short"
    try:
        detector = Detector(text).language
        lang_info = str(detector)
        code = re.search(r"name: (\w+)", lang_info).group(1)
        return code
    except Exception as e:
        return f"ERROR:{str(e)}"

def Prompt_template(inst, prompt, query, src_language, trg_language):
    inst = inst.format(src_language=src_language, trg_language=trg_language)
    instruction = f"`{inst}`"
    prompt = (
        f'{prompt}'
        f'### Instruction:\n{instruction}\n'
        f'### Input:\n{query}\n### Response:'
    )
    return prompt

# Unfinished
def chunk_text():
    pass
    
@spaces.GPU(duration=60)
def translate(
    source_text: str, 
    source_lang: str,
    target_lang: str,
    inst: str, 
    prompt: str, 
    max_length: int,
    temperature: float,
    top_p: float,
    rp: float):
    
    print(f'Text is - {source_text}')
    
    prompt = Prompt_template(inst, prompt, source_text, source_lang, target_lang)
    input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
        
    generate_kwargs = dict(
        input_ids=input_ids,
        max_length=max_length, 
        do_sample=True, 
        temperature=temperature,
        top_p=top_p,
        repetition_penalty=rp,    
    )

    outputs = model.generate(**generate_kwargs)
    
    resp = tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
    
    yield resp[len(prompt):]

CSS = """
    h1 {
        text-align: center;
        display: block;
        height: 10vh;
        align-content: center;
    }
    footer {
        visibility: hidden;
    }
"""

LICENSE = """
Model: <a href="https://huggingface.co/LLaMAX/LLaMAX3-8B-Alpaca">LLaMAX3-8B-Alpaca</a>
"""

LANG_LIST = ['Akrikaans', 'Amharic', 'Arabic', 'Armenian', 'Assamese', 'Asturian', 'Azerbaijani', \
             'Belarusian', 'Bengali', 'Bosnian', 'Bulgarian', 'Burmese', \
             'Catalan', 'Cebuano', 'Simplified Chinese', 'Traditional Chinese', 'Croatian', 'Czech', \
             'Danish', 'Dutch', 'English', 'Estonian', 'Filipino', 'Finnish', 'French', 'Fulah', \
             'Galician', 'Ganda', 'Georgian', 'German', 'Greek', 'Gujarati', \
             'Hausa', 'Hebrew', 'Hindi', 'Hungarian', \
             'Icelandic', 'Igbo', 'Indonesian', 'Irish', 'Italian', \
             'Japanese', 'Javanese', \
             'Kabuverdianu', 'Kamba', 'Kannada', 'Kazakh', 'Khmer', 'Korean', 'Kyrgyz', \
             'Lao', 'Latvian', 'Lingala', 'Lithuanian', 'Luo', 'Luxembourgish', \
             'Macedonian', 'Malay', 'Malayalam', 'Maltese', 'Maori', 'Marathi', 'Mongolian', \
             'Nepali', 'Northern', 'Norwegian', 'Nyanja', \
             'Occitan', 'Oriya', 'Oromo', \
             'Pashto', 'Persian', 'Polish', 'Portuguese', 'Punjabi', \
             'Romanian', 'Russian', \
             'Serbian', 'Shona', 'Sindhi', 'Slovak', 'Slovenian', 'Somali', 'Sorani', 'Spanish', 'Swahili', 'Swedish', \
             'Tajik', 'Tamil', 'Telugu', 'Thai', 'Turkish', \
             'Ukrainian', 'Umbundu', 'Urdu', 'Uzbek', \
             'Vietnamese', 'Welsh', 'Wolof', 'Xhosa', 'Yoruba', 'Zulu']

chatbot = gr.Chatbot(height=600)

with gr.Blocks(theme="soft", css=CSS) as demo:
    gr.Markdown(TITLE)
    with gr.Row():
        with gr.Column(scale=1):
            source_lang = gr.Textbox(
                label="Source Lang(Auto-Detect)",
                value="English",
            )
            target_lang = gr.Dropdown(
                label="Target Lang",
                value="Spanish",
                choices=LANG_LIST,
            )
            max_length = gr.Slider(
                label="Max Length",
                minimum=512,
                maximum=8192,
                value=4096,
                step=8,
            )
            temperature = gr.Slider(
                label="Temperature",
                minimum=0,
                maximum=1,
                value=0.3,
                step=0.1,
            )
            top_p = gr.Slider(
                minimum=0.0,
                maximum=1.0,
                step=0.1,
                value=1.0,
                label="top_p",
            )
            rp = gr.Slider(
                minimum=0.0,
                maximum=2.0,
                step=0.1,
                value=1.2,
                label="Repetition penalty",
            )
            with gr.Accordion("Advanced Options", open=False):
                inst = gr.Textbox(
                    label="Instruction",
                    value="Translate the following sentences from {src_language} to {trg_language}.",
                    lines=3,
                )
                prompt = gr.Textbox(
                    label="Prompt",
                    value=""" 'Below is an instruction that describes a task, paired with an input that provides further context. '
                    'Write a response that appropriately completes the request.\n' """,
                    lines=8,
                )
                
        with gr.Column(scale=4):
            source_text = gr.Textbox(
                label="Source Text",
                value="LLaMAX is a language model with powerful multilingual capabilities without loss instruction-following capabilities. "+\
                "LLaMAX supports translation between more than 100 languages, "+\
                "surpassing the performance of similarly scaled LLMs.",
                lines=10,
            )
            output_text = gr.Textbox(
                label="Output Text",
                lines=10,
                show_copy_button=True,
            )
    with gr.Row():
        submit = gr.Button(value="Submit")
        clear = gr.ClearButton([source_text, output_text])
    gr.Markdown(LICENSE)
    
    source_text.change(lang_detector, source_text, source_lang)
    submit.click(fn=translate, inputs=[source_text, source_lang, target_lang, inst, prompt, max_length, temperature, top_p, rp], outputs=[output_text])


if __name__ == "__main__":
    demo.launch()