Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor | |
from qwen_vl_utils import process_vision_info | |
import torch | |
import uuid | |
import io | |
from PIL import Image | |
from threading import Thread | |
# Define model options (for the OCR model specifically) | |
MODEL_OPTIONS = { | |
"Latex OCR": "prithivMLmods/Qwen2-VL-OCR-2B-Instruct", | |
} | |
# Preload models and processors into CUDA | |
models = {} | |
processors = {} | |
for name, model_id in MODEL_OPTIONS.items(): | |
print(f"Loading {name}...") | |
models[name] = Qwen2VLForConditionalGeneration.from_pretrained( | |
model_id, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 | |
).to("cuda").eval() | |
processors[name] = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) | |
image_extensions = Image.registered_extensions() | |
def identify_and_save_blob(blob_path): | |
"""Identifies if the blob is an image and saves it.""" | |
try: | |
with open(blob_path, 'rb') as file: | |
blob_content = file.read() | |
try: | |
Image.open(io.BytesIO(blob_content)).verify() # Check if it's a valid image | |
extension = ".png" # Default to PNG for saving | |
media_type = "image" | |
except (IOError, SyntaxError): | |
raise ValueError("Unsupported media type. Please upload a valid image.") | |
filename = f"temp_{uuid.uuid4()}_media{extension}" | |
with open(filename, "wb") as f: | |
f.write(blob_content) | |
return filename, media_type | |
except FileNotFoundError: | |
raise ValueError(f"The file {blob_path} was not found.") | |
except Exception as e: | |
raise ValueError(f"An error occurred while processing the file: {e}") | |
def qwen_inference(model_name, media_input, text_input=None): | |
"""Handles inference for the selected model.""" | |
model = models[model_name] | |
processor = processors[model_name] | |
if isinstance(media_input, str): | |
media_path = media_input | |
if media_path.endswith(tuple([i for i in image_extensions.keys()])): | |
media_type = "image" | |
else: | |
try: | |
media_path, media_type = identify_and_save_blob(media_input) | |
except Exception as e: | |
raise ValueError("Unsupported media type. Please upload a valid image.") | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{ | |
"type": media_type, | |
media_type: media_path | |
}, | |
{"type": "text", "text": text_input}, | |
], | |
} | |
] | |
text = processor.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
image_inputs, _ = process_vision_info(messages) | |
inputs = processor( | |
text=[text], | |
images=image_inputs, | |
padding=True, | |
return_tensors="pt", | |
).to("cuda") | |
streamer = TextIteratorStreamer( | |
processor.tokenizer, skip_prompt=True, skip_special_tokens=True | |
) | |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
# Remove <|im_end|> or similar tokens from the output | |
buffer = buffer.replace("<|im_end|>", "") | |
yield buffer | |
def ocr_endpoint(image, question): | |
"""This function will be exposed to the /ocr endpoint for OCR processing.""" | |
return qwen_inference("Latex OCR", image, question) | |
# Gradio app setup for OCR endpoint | |
with gr.Blocks() as demo: | |
gr.Markdown("# Qwen2VL OCR Model - Latex OCR") | |
with gr.Row(): | |
with gr.Column(): | |
input_media = gr.File(label="Upload Image", type="filepath") | |
text_input = gr.Textbox(label="Question", placeholder="Ask a question about the image...") | |
submit_btn = gr.Button(value="Submit") | |
with gr.Column(): | |
output_text = gr.Textbox(label="Output Text", lines=10) | |
submit_btn.click( | |
ocr_endpoint, [input_media, text_input], [output_text] | |
) | |
# Launch the app on the /ocr endpoint | |
demo.queue().launch(server_name="0.0.0.0", server_port=7860, share=True) | |