Spaces:
Runtime error
Runtime error
Linoy Tsaban
commited on
Commit
·
4e5195b
1
Parent(s):
ba508b5
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,14 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from diffusers import StableDiffusionPipeline, DDIMScheduler
|
4 |
-
from utils import *
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
|
11 |
# load sd model
|
12 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
-
model_id = "stabilityai/stable-diffusion-2-1-base"
|
14 |
-
inv_pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to(device)
|
15 |
-
inv_pipe.scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
|
16 |
|
17 |
def randomize_seed_fn():
|
18 |
seed = random.randint(0, np.iinfo(np.int32).max)
|
@@ -21,69 +17,173 @@ def randomize_seed_fn():
|
|
21 |
def reset_do_inversion():
|
22 |
return True
|
23 |
|
24 |
-
def get_example():
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
]
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
frames,
|
40 |
latents,
|
41 |
inverted_latents,
|
42 |
seed,
|
43 |
randomize_seed,
|
44 |
do_inversion,
|
45 |
-
height:int = 512,
|
46 |
-
weidth: int = 512,
|
47 |
# save_dir: str = "latents",
|
48 |
steps: int = 500,
|
49 |
batch_size: int = 8,
|
50 |
n_frames: int = 40,
|
51 |
inversion_prompt:str = '',
|
52 |
-
|
53 |
):
|
|
|
|
|
|
|
|
|
54 |
|
55 |
if do_inversion or randomize_seed:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
|
58 |
-
frames = video_to_frames(video, img_size=(height, weidth))
|
59 |
-
# data_path = os.path.join('data', Path(video_path).stem)
|
60 |
-
|
61 |
-
toy_scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
|
62 |
-
toy_scheduler.set_timesteps(save_steps)
|
63 |
-
timesteps_to_save, num_inference_steps = get_timesteps(toy_scheduler, num_inference_steps=save_steps,
|
64 |
-
strength=1.0,
|
65 |
-
device=device)
|
66 |
if randomize_seed:
|
67 |
seed = randomize_seed_fn()
|
68 |
seed_everything(seed)
|
69 |
|
70 |
-
frames, latents =
|
71 |
-
|
72 |
-
inverted_latents = extract_latents(inv_pipe, num_steps = steps,
|
73 |
-
latent_frames = latents,
|
74 |
-
batch_size = batch_size,
|
75 |
-
timesteps_to_save = timesteps_to_save,
|
76 |
-
inversion_prompt = inversion_prompt,)
|
77 |
frames = gr.State(value=frames)
|
78 |
latents = gr.State(value=latents)
|
79 |
-
inverted_latents = gr.State(value=
|
80 |
do_inversion = False
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
return frames, latents, inverted_latents, do_inversion, output_vid
|
85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
|
|
|
|
|
|
87 |
|
88 |
########
|
89 |
# demo #
|
@@ -107,14 +207,14 @@ with gr.Blocks(css="style.css") as demo:
|
|
107 |
do_inversion = gr.State(value=True)
|
108 |
|
109 |
with gr.Row():
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
|
115 |
|
116 |
with gr.Row():
|
117 |
-
|
118 |
label="Describe your edited video",
|
119 |
max_lines=1, value=""
|
120 |
)
|
@@ -132,33 +232,41 @@ with gr.Blocks(css="style.css") as demo:
|
|
132 |
run_button = gr.Button("Edit your video!", visible=True)
|
133 |
|
134 |
with gr.Accordion("Advanced Options", open=False):
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
|
152 |
-
|
153 |
fn = reset_do_inversion,
|
154 |
outputs = [do_inversion],
|
155 |
queue = False)
|
156 |
|
157 |
-
|
158 |
fn = reset_do_inversion,
|
159 |
outputs = [do_inversion],
|
160 |
queue = False).then(fn = preprocess_and_invert,
|
161 |
-
inputs = [
|
162 |
frames,
|
163 |
latents,
|
164 |
inverted_latents,
|
@@ -173,19 +281,38 @@ with gr.Blocks(css="style.css") as demo:
|
|
173 |
outputs = [frames,
|
174 |
latents,
|
175 |
inverted_latents,
|
176 |
-
do_inversion
|
177 |
-
output_vid
|
178 |
|
179 |
])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
|
181 |
-
gr.Examples(
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
)
|
187 |
|
188 |
|
189 |
|
190 |
demo.queue()
|
191 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from diffusers import StableDiffusionPipeline, DDIMScheduler
|
4 |
+
# from utils import *
|
5 |
+
from diffusers.utils import export_to_video
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# load sd model
|
8 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
+
# model_id = "stabilityai/stable-diffusion-2-1-base"
|
10 |
+
# inv_pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to(device)
|
11 |
+
# inv_pipe.scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
|
12 |
|
13 |
def randomize_seed_fn():
|
14 |
seed = random.randint(0, np.iinfo(np.int32).max)
|
|
|
17 |
def reset_do_inversion():
|
18 |
return True
|
19 |
|
20 |
+
# def get_example():
|
21 |
+
# case = [
|
22 |
+
# [
|
23 |
+
# 'examples/wolf.mp4',
|
24 |
|
25 |
+
# ],
|
26 |
+
# [
|
27 |
+
# 'examples/woman-running.mp4',
|
28 |
|
29 |
+
# ],
|
30 |
+
|
31 |
+
# ]
|
32 |
+
# return case
|
33 |
+
|
34 |
+
|
35 |
+
def prep(config):
|
36 |
+
# timesteps to save
|
37 |
+
if config["sd_version"] == '2.1':
|
38 |
+
model_key = "stabilityai/stable-diffusion-2-1-base"
|
39 |
+
elif config["sd_version"] == '2.0':
|
40 |
+
model_key = "stabilityai/stable-diffusion-2-base"
|
41 |
+
elif config["sd_version"] == '1.5' or config["sd_version"] == 'ControlNet':
|
42 |
+
model_key = "runwayml/stable-diffusion-v1-5"
|
43 |
+
elif config["sd_version"] == 'depth':
|
44 |
+
model_key = "stabilityai/stable-diffusion-2-depth"
|
45 |
+
toy_scheduler = DDIMScheduler.from_pretrained(model_key, subfolder="scheduler")
|
46 |
+
toy_scheduler.set_timesteps(config["save_steps"])
|
47 |
+
timesteps_to_save, num_inference_steps = get_timesteps(toy_scheduler, num_inference_steps=config["save_steps"],
|
48 |
+
strength=1.0,
|
49 |
+
device=device)
|
50 |
|
51 |
+
# seed_everything(config["seed"])
|
52 |
+
if not config["frames"]: # original non demo setting
|
53 |
+
save_path = os.path.join(config["save_dir"],
|
54 |
+
f'sd_{config["sd_version"]}',
|
55 |
+
Path(config["data_path"]).stem,
|
56 |
+
f'steps_{config["steps"]}',
|
57 |
+
f'nframes_{config["n_frames"]}')
|
58 |
+
os.makedirs(os.path.join(save_path, f'latents'), exist_ok=True)
|
59 |
+
add_dict_to_yaml_file(os.path.join(config["save_dir"], 'inversion_prompts.yaml'), Path(config["data_path"]).stem, config["inversion_prompt"])
|
60 |
+
# save inversion prompt in a txt file
|
61 |
+
with open(os.path.join(save_path, 'inversion_prompt.txt'), 'w') as f:
|
62 |
+
f.write(config["inversion_prompt"])
|
63 |
+
else:
|
64 |
+
save_path = None
|
65 |
|
66 |
+
model = Preprocess(device, config)
|
67 |
+
print(type(model.config["batch_size"]))
|
68 |
+
frames, latents, total_inverted_latents, rgb_reconstruction = model.extract_latents(
|
69 |
+
num_steps=model.config["steps"],
|
70 |
+
save_path=save_path,
|
71 |
+
batch_size=model.config["batch_size"],
|
72 |
+
timesteps_to_save=timesteps_to_save,
|
73 |
+
inversion_prompt=model.config["inversion_prompt"],
|
74 |
+
)
|
75 |
+
|
76 |
+
|
77 |
+
return frames, latents, total_inverted_latents, rgb_reconstruction
|
78 |
+
|
79 |
+
def preprocess_and_invert(input_video,
|
80 |
frames,
|
81 |
latents,
|
82 |
inverted_latents,
|
83 |
seed,
|
84 |
randomize_seed,
|
85 |
do_inversion,
|
|
|
|
|
86 |
# save_dir: str = "latents",
|
87 |
steps: int = 500,
|
88 |
batch_size: int = 8,
|
89 |
n_frames: int = 40,
|
90 |
inversion_prompt:str = '',
|
91 |
+
|
92 |
):
|
93 |
+
sd_version = "2.1"
|
94 |
+
height = 512
|
95 |
+
weidth: int = 512
|
96 |
+
save_steps = 50
|
97 |
|
98 |
if do_inversion or randomize_seed:
|
99 |
+
preprocess_config = {}
|
100 |
+
preprocess_config['H'] = height
|
101 |
+
preprocess_config['W'] = weidth
|
102 |
+
preprocess_config['save_dir'] = 'latents'
|
103 |
+
preprocess_config['sd_version'] = sd_version
|
104 |
+
preprocess_config['steps'] = steps
|
105 |
+
preprocess_config['batch_size'] = batch_size
|
106 |
+
preprocess_config['save_steps'] = save_steps
|
107 |
+
preprocess_config['n_frames'] = n_frames
|
108 |
+
preprocess_config['seed'] = seed
|
109 |
+
preprocess_config['inversion_prompt'] = inversion_prompt
|
110 |
+
preprocess_config['frames'] = video_to_frames(input_video)
|
111 |
+
preprocess_config['data_path'] = input_video.split(".")[0]
|
112 |
|
113 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
if randomize_seed:
|
115 |
seed = randomize_seed_fn()
|
116 |
seed_everything(seed)
|
117 |
|
118 |
+
frames, latents, total_inverted_latents, rgb_reconstruction = prep(preprocess_config)
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
frames = gr.State(value=frames)
|
120 |
latents = gr.State(value=latents)
|
121 |
+
inverted_latents = gr.State(value=total_inverted_latents)
|
122 |
do_inversion = False
|
123 |
|
124 |
+
return frames, latents, inverted_latents, do_inversion
|
125 |
+
|
|
|
126 |
|
127 |
+
def edit_with_pnp(input_video,
|
128 |
+
frames,
|
129 |
+
latents,
|
130 |
+
inverted_latents,
|
131 |
+
seed,
|
132 |
+
randomize_seed,
|
133 |
+
do_inversion,
|
134 |
+
steps,
|
135 |
+
prompt: str = "a marble sculpture of a woman running, Venus de Milo",
|
136 |
+
# negative_prompt: str = "ugly, blurry, low res, unrealistic, unaesthetic",
|
137 |
+
pnp_attn_t: float = 0.5,
|
138 |
+
pnp_f_t: float = 0.8,
|
139 |
+
batch_size: int = 8, #needs to be the same as for preprocess
|
140 |
+
n_frames: int = 40,#needs to be the same as for preprocess
|
141 |
+
n_timesteps: int = 50,
|
142 |
+
gudiance_scale: float = 7.5,
|
143 |
+
inversion_prompt: str = ""#needs to be the same as for preprocess
|
144 |
+
):
|
145 |
+
config = {}
|
146 |
+
|
147 |
+
config["sd_version"] = "2.1"
|
148 |
+
config["device"] = device
|
149 |
+
config["n_timesteps"] = n_timesteps
|
150 |
+
config["n_frames"] = n_frames
|
151 |
+
config["batch_size"] = batch_size
|
152 |
+
config["guidance_scale"] = gudiance_scale
|
153 |
+
config["prompt"] = prompt
|
154 |
+
config["negative_prompt"] = "ugly, blurry, low res, unrealistic, unaesthetic",
|
155 |
+
config["pnp_attn_t"] = pnp_attn_t
|
156 |
+
config["pnp_f_t"] = pnp_f_t
|
157 |
+
config["pnp_inversion_prompt"] = inversion_prompt
|
158 |
+
|
159 |
+
|
160 |
+
if do_inversion:
|
161 |
+
frames, latents, inverted_latents, do_inversion = preprocess_and_invert(
|
162 |
+
input_video,
|
163 |
+
frames,
|
164 |
+
latents,
|
165 |
+
inverted_latents,
|
166 |
+
seed,
|
167 |
+
randomize_seed,
|
168 |
+
do_inversion,
|
169 |
+
steps,
|
170 |
+
batch_size,
|
171 |
+
n_frames,
|
172 |
+
inversion_prompt)
|
173 |
+
do_inversion = False
|
174 |
+
|
175 |
+
|
176 |
+
if randomize_seed:
|
177 |
+
seed = randomize_seed_fn()
|
178 |
+
seed_everything(seed)
|
179 |
+
|
180 |
+
|
181 |
+
editor = TokenFlow(config=config, frames=frames.value, inverted_latents=inverted_latents.value)
|
182 |
+
edited_frames = editor.edit_video()
|
183 |
|
184 |
+
save_video(edited_frames, 'tokenflow_PnP_fps_30.mp4', fps=30)
|
185 |
+
# path = export_to_video(edited_frames)
|
186 |
+
return 'tokenflow_PnP_fps_30.mp4', frames, latents, inverted_latents, do_inversion
|
187 |
|
188 |
########
|
189 |
# demo #
|
|
|
207 |
do_inversion = gr.State(value=True)
|
208 |
|
209 |
with gr.Row():
|
210 |
+
input_video = gr.Video(label="Input Video", interactive=True, elem_id="input_video")
|
211 |
+
output_video = gr.Video(label="Edited Video", interactive=False, elem_id="output_video")
|
212 |
+
input_video.style(height=365, width=365)
|
213 |
+
output_video.style(height=365, width=365)
|
214 |
|
215 |
|
216 |
with gr.Row():
|
217 |
+
prompt = gr.Textbox(
|
218 |
label="Describe your edited video",
|
219 |
max_lines=1, value=""
|
220 |
)
|
|
|
232 |
run_button = gr.Button("Edit your video!", visible=True)
|
233 |
|
234 |
with gr.Accordion("Advanced Options", open=False):
|
235 |
+
with gr.Tabs() as tabs:
|
236 |
+
with gr.TabItem('General options', id=2):
|
237 |
+
with gr.Row():
|
238 |
+
with gr.Column(min_width=100):
|
239 |
+
seed = gr.Number(value=0, precision=0, label="Seed", interactive=True)
|
240 |
+
randomize_seed = gr.Checkbox(label='Randomize seed', value=False)
|
241 |
+
gudiance_scale = gr.Slider(label='Guidance Scale', minimum=1, maximum=30,
|
242 |
+
value=7.5, step=0.5, interactive=True)
|
243 |
+
steps = gr.Slider(label='Inversion steps', minimum=100, maximum=500,
|
244 |
+
value=500, step=1, interactive=True)
|
245 |
+
n_timesteps = gr.Slider(label='Diffusion steps', minimum=25, maximum=100,
|
246 |
+
value=50, step=1, interactive=True)
|
247 |
+
|
248 |
+
with gr.Column(min_width=100):
|
249 |
+
inversion_prompt = gr.Textbox(lines=1, label="Inversion prompt", interactive=True, placeholder="")
|
250 |
+
batch_size = gr.Slider(label='Batch size', minimum=1, maximum=10,
|
251 |
+
value=8, step=1, interactive=True)
|
252 |
+
n_frames = gr.Slider(label='Num frames', minimum=20, maximum=200,
|
253 |
+
value=40, step=1, interactive=True)
|
254 |
+
pnp_attn_t = gr.Slider(label='pnp attention threshold', minimum=0, maximum=1,
|
255 |
+
value=0.5, step=0.5, interactive=True)
|
256 |
+
pnp_f_t = gr.Slider(label='pnp feature threshold', minimum=0, maximum=1,
|
257 |
+
value=0.8, step=0.05, interactive=True)
|
258 |
|
259 |
|
260 |
+
input_video.change(
|
261 |
fn = reset_do_inversion,
|
262 |
outputs = [do_inversion],
|
263 |
queue = False)
|
264 |
|
265 |
+
input_video.upload(
|
266 |
fn = reset_do_inversion,
|
267 |
outputs = [do_inversion],
|
268 |
queue = False).then(fn = preprocess_and_invert,
|
269 |
+
inputs = [input_video,
|
270 |
frames,
|
271 |
latents,
|
272 |
inverted_latents,
|
|
|
281 |
outputs = [frames,
|
282 |
latents,
|
283 |
inverted_latents,
|
284 |
+
do_inversion
|
|
|
285 |
|
286 |
])
|
287 |
+
|
288 |
+
run_button.click(fn = edit_with_pnp,
|
289 |
+
inputs = [input_video,
|
290 |
+
frames,
|
291 |
+
latents,
|
292 |
+
inverted_latents,
|
293 |
+
seed,
|
294 |
+
randomize_seed,
|
295 |
+
do_inversion,
|
296 |
+
steps,
|
297 |
+
prompt,
|
298 |
+
pnp_attn_t,
|
299 |
+
pnp_f_t,
|
300 |
+
batch_size,
|
301 |
+
n_frames,
|
302 |
+
n_timesteps,
|
303 |
+
gudiance_scale,
|
304 |
+
inversion_prompt ],
|
305 |
+
outputs = [output_video, frames, latents, inverted_latents, do_inversion]
|
306 |
+
)
|
307 |
|
308 |
+
# gr.Examples(
|
309 |
+
# examples=get_example(),
|
310 |
+
# label='Examples',
|
311 |
+
# inputs=[input_vid],
|
312 |
+
# outputs=[input_vid]
|
313 |
+
# )
|
314 |
|
315 |
|
316 |
|
317 |
demo.queue()
|
318 |
+
demo.launch(share=True)
|