Spaces:
wuhp
/
Running on Zero

myr1-2 / app.py
wuhp's picture
Update app.py
7014802 verified
import gradio as gr
import numpy as np
import torch
import faiss
import spaces
from datasets import load_dataset
from peft import LoraConfig, PeftModel, TaskType, get_peft_model, prepare_model_for_kbit_training
from sentence_transformers import SentenceTransformer
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
DataCollatorForLanguageModeling,
Trainer,
TrainingArguments,
pipeline,
)
NUM_EXAMPLES_FOR_FINETUNING = 50 # Constant for the number of examples to use for finetuning
TEXT_PIPELINE = None # Global to store the custom R1 text generation pipeline
COMPARISON_PIPELINE = None # Global to store the official R1 text generation pipeline
def _load_model_and_tokenizer(model_name: str, subfolder: str = None, quantization_config: BitsAndBytesConfig = None, device_map: str = "auto", trust_remote_code: bool = True) -> tuple[AutoModelForCausalLM, AutoTokenizer]:
"""
Helper function to load a causal language model and its tokenizer.
Args:
model_name (str): The name or path of the pretrained model.
subfolder (str, optional): Subfolder within the model repository. Defaults to None.
quantization_config (BitsAndBytesConfig, optional): Configuration for quantization. Defaults to None.
device_map (str, optional): Device mapping for model loading. Defaults to "auto".
trust_remote_code (bool, optional): Trust remote code for custom models. Defaults to True.
Returns:
tuple[AutoModelForCausalLM, AutoTokenizer]: The loaded model and tokenizer.
"""
config = AutoConfig.from_pretrained(model_name, subfolder=subfolder, trust_remote_code=trust_remote_code)
tokenizer = AutoTokenizer.from_pretrained(model_name, subfolder=subfolder, trust_remote_code=trust_remote_code)
model = AutoModelForCausalLM.from_pretrained(
model_name,
subfolder=subfolder,
config=config,
quantization_config=quantization_config,
device_map=device_map,
trust_remote_code=trust_remote_code
)
return model, tokenizer
@spaces.GPU(duration=300)
def finetune_small_subset() -> str:
"""
Fine-tunes the custom R1 model on a small subset of the ServiceNow-AI/R1-Distill-SFT dataset.
Steps:
1) Loads the model from "wuhp/myr1" (using files from the "myr1" subfolder via trust_remote_code).
2) Applies 4-bit quantization and prepares for QLoRA training.
3) Fine-tunes on the dataset (mapping "problem" to prompt and "solution" to target).
4) Saves the LoRA adapter to "finetuned_myr1".
5) Reloads the adapter for inference.
Returns:
str: A message indicating finetuning completion.
"""
ds = load_dataset("ServiceNow-AI/R1-Distill-SFT", "v0", split="train")
ds = ds.select(range(min(NUM_EXAMPLES_FOR_FINETUNING, len(ds))))
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
)
base_model, tokenizer = _load_model_and_tokenizer(
"wuhp/myr1", subfolder="myr1", quantization_config=bnb_config, device_map="auto"
)
base_model = prepare_model_for_kbit_training(base_model)
lora_config = LoraConfig(
r=16,
lora_alpha=32,
lora_dropout=0.05,
bias="none",
target_modules=["q_proj", "v_proj"],
task_type=TaskType.CAUSAL_LM,
)
lora_model = get_peft_model(base_model, lora_config)
def tokenize_fn(ex):
text = (
f"Problem: {ex['problem']}\n\n"
f"Solution: {ex['solution']}"
)
return tokenizer(text, truncation=True, max_length=512)
ds = ds.map(tokenize_fn, batched=False, remove_columns=ds.column_names)
ds.set_format("torch")
collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
training_args = TrainingArguments(
output_dir="finetuned_myr1",
num_train_epochs=1,
per_device_train_batch_size=1,
gradient_accumulation_steps=2,
logging_steps=5,
save_steps=999999,
save_total_limit=1,
fp16=False,
)
trainer = Trainer(
model=lora_model,
args=training_args,
train_dataset=ds,
data_collator=collator,
)
trainer.train()
trainer.model.save_pretrained("finetuned_myr1")
tokenizer.save_pretrained("finetuned_myr1")
base_model_2, tokenizer_2 = _load_model_and_tokenizer(
"wuhp/myr1", subfolder="myr1", quantization_config=bnb_config, device_map="auto"
)
base_model_2 = prepare_model_for_kbit_training(base_model_2)
lora_model_2 = PeftModel.from_pretrained(
base_model_2,
"finetuned_myr1",
)
global TEXT_PIPELINE
TEXT_PIPELINE = pipeline("text-generation", model=lora_model_2, tokenizer=tokenizer_2)
return "Finetuning complete. Model loaded for inference."
def ensure_pipeline() -> pipeline:
"""
Loads the base model (without LoRA) if no fine-tuned model is available.
Returns:
pipeline: The text generation pipeline using the custom R1 model.
"""
global TEXT_PIPELINE
if TEXT_PIPELINE is None:
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
)
base_model, tokenizer = _load_model_and_tokenizer(
"wuhp/myr1", subfolder="myr1", quantization_config=bnb_config, device_map="auto"
)
TEXT_PIPELINE = pipeline("text-generation", model=base_model, tokenizer=tokenizer)
return TEXT_PIPELINE
def ensure_comparison_pipeline() -> pipeline:
"""
Loads the official R1 model pipeline if not already loaded.
Returns:
pipeline: The text generation pipeline using the official R1 model.
"""
global COMPARISON_PIPELINE
if COMPARISON_PIPELINE is None:
config = AutoConfig.from_pretrained("deepseek-ai/DeepSeek-R1-Distill-Llama-8B")
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-R1-Distill-Llama-8B")
model = AutoModelForCausalLM.from_pretrained(
"deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
config=config,
device_map="auto"
)
COMPARISON_PIPELINE = pipeline("text-generation", model=model, tokenizer=tokenizer)
return COMPARISON_PIPELINE
@spaces.GPU(duration=120)
def predict(
prompt: str,
temperature: float,
top_p: float,
min_new_tokens: int,
max_new_tokens: int
) -> str:
"""
Direct generation without retrieval using the custom R1 model.
Args:
prompt (str): The input prompt for text generation.
temperature (float): Sampling temperature.
top_p (float): Top-p sampling probability.
min_new_tokens (int): Minimum number of new tokens to generate.
max_new_tokens (int): Maximum number of new tokens to generate.
Returns:
str: The generated text output with "Thinking Process" and "Solution" sections.
"""
pipe = ensure_pipeline()
thinking_prefix = "**Thinking Process:**\n"
solution_prefix = "\n**Solution:**\n"
formatted_output = thinking_prefix
output = pipe(
prompt,
temperature=float(temperature),
top_p=float(top_p),
min_new_tokens=int(min_new_tokens),
max_new_tokens=int(max_new_tokens),
do_sample=True
)[0]["generated_text"]
formatted_output += output.strip()
return formatted_output
@spaces.GPU(duration=120)
def compare_models(
prompt: str,
temperature: float,
top_p: float,
min_new_tokens: int,
max_new_tokens: int
) -> tuple[str, str]:
"""
Compare outputs between your custom R1 model and the official R1 model.
Args:
prompt (str): The input prompt for text generation.
temperature (float): Sampling temperature.
top_p (float): Top-p sampling probability.
min_new_tokens (int): Minimum number of new tokens to generate.
max_new_tokens (int): Maximum number of new tokens to generate.
Returns:
tuple[str, str]: A tuple containing the formatted generated text from the custom R1 and official R1 models, each with "Thinking Process" and "Solution" sections.
"""
local_pipe = ensure_pipeline()
comp_pipe = ensure_comparison_pipeline()
def format_comparison_output(model_name, raw_output):
thinking_prefix = f"**{model_name} - Thinking Process:**\n"
solution_prefix = f"\n**{model_name} - Solution:**\n"
formatted_output = thinking_prefix
formatted_output += raw_output.strip()
return formatted_output
local_out_raw = local_pipe(
prompt,
temperature=float(temperature),
top_p=float(top_p),
min_new_tokens=int(min_new_tokens),
max_new_tokens=int(max_new_tokens),
do_sample=True
)[0]["generated_text"]
comp_out_raw = comp_pipe(
prompt,
temperature=float(temperature),
top_p=float(top_p),
min_new_tokens=int(min_new_tokens),
max_new_tokens=int(max_new_tokens),
do_sample=True
)[0]["generated_text"]
local_out_formatted = format_comparison_output("Custom R1", local_out_raw)
comp_out_formatted = format_comparison_output("Official R1", comp_out_raw)
return local_out_formatted, comp_out_formatted
class ConversationRetriever:
"""
A FAISS-based retriever using SentenceTransformer for embedding.
This class indexes text chunks using FAISS and SentenceTransformer embeddings
to enable efficient similarity search for retrieval-augmented generation.
"""
def __init__(self, model_name: str = "sentence-transformers/all-MiniLM-L6-v2", embed_dim: int = 384):
"""
Initializes the ConversationRetriever.
Args:
model_name (str, optional): Name of the SentenceTransformer model. Defaults to "sentence-transformers/all-MiniLM-L6-v2".
embed_dim (int, optional): Dimensionality of the embeddings. Defaults to 384.
"""
self.embed_model = SentenceTransformer(model_name)
self.embed_dim = embed_dim
self.index = faiss.IndexFlatL2(embed_dim)
self.texts = []
self.vectors = []
self.ids = []
self.id_counter = 0
def add_text(self, text: str):
"""
Adds text to the retriever's index.
Args:
text (str): The text to add.
"""
if not text.strip():
return
emb = self.embed_model.encode([text], convert_to_numpy=True)
vec = emb[0].astype(np.float32)
self.index.add(vec.reshape(1, -1))
self.texts.append(text)
self.vectors.append(vec)
self.ids.append(self.id_counter)
self.id_counter += 1
def search(self, query: str, top_k: int = 3) -> list[tuple[str, float]]:
"""
Searches the retriever index for texts similar to the query.
Args:
query (str): The query text.
top_k (int, optional): Number of top results to retrieve. Defaults to 3.
Returns:
list[tuple[str, float]]: A list of tuples, where each tuple contains (text, distance).
"""
q_emb = self.embed_model.encode([query], convert_to_numpy=True).astype(np.float32)
q_vec = q_emb[0].reshape(1, -1)
distances, indices = self.index.search(q_vec, top_k)
results = []
for dist, idx in zip(distances[0], indices[0]):
if idx < len(self.texts):
results.append((self.texts[idx], dist))
return results
retriever = ConversationRetriever()
def build_rag_prompt(user_query: str, retrieved_chunks: list[tuple[str, float]]) -> str:
"""
Builds a prompt for retrieval-augmented generation.
Args:
user_query (str): The user's input query.
retrieved_chunks (list[tuple[str, float]]): List of retrieved text chunks and their distances.
Returns:
str: The formatted prompt string including instructions for step-by-step thinking and using context.
"""
context_str = ""
if retrieved_chunks:
context_str += "**Relevant Context:**\n"
for i, (chunk, dist) in enumerate(retrieved_chunks):
context_str += f"Chunk #{i+1} (similarity ~ {dist:.2f}):\n> {chunk}\n\n"
prompt_instruction = "Please provide a detailed answer, showing your thinking process step-by-step before stating the final answer. Use the provided context if relevant."
prompt = (
f"**User Query:**\n{user_query}\n\n"
f"{context_str}\n"
f"{prompt_instruction}\n\n"
"**Answer:**\n"
)
return prompt
@spaces.GPU(duration=120)
def chat_rag(
user_input: str,
history: list[list[str]],
temperature: float,
top_p: float,
min_new_tokens: int,
max_new_tokens: int
) -> tuple[list[list[str]], list[list[str]]]:
"""
Chat with retrieval augmentation using the custom R1 model.
Args:
user_input (str): The user's chat input.
history (list[list[str]]): The chat history.
temperature (float): Sampling temperature.
top_p (float): Top-p sampling probability.
min_new_tokens (int): Minimum number of new tokens to generate.
max_new_tokens (int): Maximum number of new tokens to generate.
Returns:
tuple[list[list[str]], list[list[str]]]: Updated chat history and chatbot display history, with formatted assistant replies.
"""
pipe = ensure_pipeline()
retriever.add_text(f"User: {user_input}")
top_k = 3
results = retriever.search(user_input, top_k=top_k)
prompt = build_rag_prompt(user_input, results)
thinking_prefix = "**Thinking Process:**\n"
solution_prefix = "\n**Solution:**\n"
formatted_output = thinking_prefix
output = pipe(
prompt,
temperature=float(temperature),
top_p=float(top_p),
min_new_tokens=int(min_new_tokens),
max_new_tokens=int(max_new_tokens),
do_sample=True
)[0]["generated_text"]
formatted_output += output.strip()
assistant_reply = formatted_output
if assistant_reply.startswith(prompt):
assistant_reply = assistant_reply[len(prompt):].strip()
else:
assistant_reply = assistant_reply.strip()
retriever.add_text(f"Assistant: {assistant_reply}")
history.append([user_input, assistant_reply])
return history, history
# Build the Gradio interface.
with gr.Blocks() as demo:
gr.Markdown("# QLoRA Fine-tuning & RAG-based Chat Demo using Custom R1 Model")
gr.Markdown("---")
gr.Markdown("## ⚙️ Fine-tuning (Optional)")
gr.Markdown("This section allows you to fine-tune the custom R1 model on a small subset of the ServiceNow dataset. This step is optional but can potentially improve the model's performance on ServiceNow-related tasks. **Note:** This process may take up to 5 minutes.")
finetune_btn = gr.Button("🚀 Start Fine-tuning (QLoRA)")
status_box = gr.Textbox(label="Fine-tuning Status", interactive=False)
finetune_btn.click(fn=finetune_small_subset, outputs=status_box)
gr.Markdown("---")
gr.Markdown("## ✍️ Direct Generation (No Retrieval)")
gr.Markdown("Enter a prompt below to generate text directly using the custom R1 model. This is standard text generation without retrieval augmentation.")
prompt_in = gr.Textbox(lines=3, label="Input Prompt", placeholder="Enter your prompt here...")
temperature = gr.Slider(0.0, 1.5, step=0.1, value=0.7, label="Temperature (Creativity)")
top_p = gr.Slider(0.0, 1.0, step=0.05, value=0.9, label="Top-p (Sampling Nucleus)")
min_tokens = gr.Slider(1, 2500, value=50, step=10, label="Min New Tokens")
max_tokens = gr.Slider(1, 2500, value=200, step=50, label="Max New Tokens")
output_box = gr.Textbox(label="Custom R1 Output", lines=8, interactive=False)
gen_btn = gr.Button("✨ Generate Text")
gen_btn.click(
fn=predict,
inputs=[prompt_in, temperature, top_p, min_tokens, max_tokens],
outputs=output_box
)
gr.Markdown("---")
gr.Markdown("## 🆚 Compare Custom R1 vs Official R1")
gr.Markdown("Enter a prompt to compare the text generation of your fine-tuned custom R1 model with the official DeepSeek-R1-Distill-Llama-8B model.")
compare_prompt_in = gr.Textbox(lines=3, label="Comparison Prompt", placeholder="Enter prompt for comparison...")
compare_btn = gr.Button("⚖️ Compare Models")
out_custom = gr.Textbox(label="Custom R1 Output", lines=6, interactive=False)
out_official = gr.Textbox(label="Official R1 Output", lines=6, interactive=False)
compare_btn.click(
fn=compare_models,
inputs=[compare_prompt_in, temperature, top_p, min_tokens, max_tokens],
outputs=[out_custom, out_official]
)
gr.Markdown("---")
gr.Markdown("## 💬 Chat with Retrieval-Augmented Memory (RAG)")
gr.Markdown("Chat with the custom R1 model, enhanced with a retrieval-augmented memory. The model will retrieve relevant information based on your queries to provide more informed responses.")
with gr.Row():
with gr.Column():
chatbot = gr.Chatbot(label="RAG Chatbot")
chat_state = gr.State([])
user_input = gr.Textbox(
show_label=False,
placeholder="Ask a question to the RAG Chatbot...",
lines=2
)
send_btn = gr.Button("➡️ Send")
user_input.submit(
fn=chat_rag,
inputs=[user_input, chat_state, temperature, top_p, min_tokens, max_tokens],
outputs=[chat_state, chatbot]
)
send_btn.click(
fn=chat_rag,
inputs=[user_input, chat_state, temperature, top_p, min_tokens, max_tokens],
outputs=[chat_state, chatbot]
)
gr.Markdown("---")
demo.launch()