Spaces:
wuhp
/
Running on Zero

File size: 18,062 Bytes
5755412
09f030f
4cf237b
09f030f
2f957f0
09f030f
13b1681
 
09f030f
 
f82c314
 
 
09f030f
 
f82c314
 
 
13b1681
f82c314
eccd8f6
54e45c0
09f030f
3986b4b
13b1681
2f957f0
09f030f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5aeb95
2f957f0
09f030f
b26485f
4df7266
09f030f
c8df7a5
 
 
 
 
 
09f030f
 
 
b26485f
bfe03fe
09f030f
f82c314
13b1681
 
4df6952
13b1681
1ce8e5a
13b1681
09f030f
 
eccd8f6
f82c314
13b1681
 
 
 
 
 
 
1ce8e5a
13b1681
 
 
 
4e66e3d
4fa9540
4df6952
 
4fa9540
 
4e66e3d
4fa9540
f82c314
 
4e66e3d
f82c314
 
 
4e66e3d
f82c314
 
13b1681
3986b4b
 
c8df7a5
f82c314
 
 
13b1681
f82c314
 
4cf237b
f82c314
 
 
13b1681
f82c314
 
3986b4b
09f030f
f82c314
13b1681
 
1ce8e5a
 
 
 
13b1681
f82c314
3986b4b
13b1681
b5aeb95
 
09f030f
 
b26485f
c8df7a5
09f030f
 
 
b26485f
f82c314
 
13b1681
 
 
 
 
f82c314
09f030f
 
4cf237b
13b1681
f82c314
b446d41
09f030f
 
b5aeb95
4df7266
09f030f
 
 
b5aeb95
 
 
 
 
 
 
 
 
 
2f957f0
b5aeb95
 
09f030f
2f957f0
09f030f
 
 
 
 
 
 
b26485f
4df7266
09f030f
 
 
 
 
 
 
 
 
3986b4b
b26485f
4e66e3d
3986b4b
 
 
 
 
f82c314
4e66e3d
 
f82c314
 
4e66e3d
3986b4b
 
683b0bb
3986b4b
 
eccd8f6
09f030f
2f957f0
09f030f
 
 
 
 
 
 
b5aeb95
4df7266
09f030f
 
 
 
7014802
09f030f
 
 
 
3986b4b
b5aeb95
 
 
 
3986b4b
 
 
 
683b0bb
3986b4b
 
 
b5aeb95
 
 
 
 
 
3986b4b
 
 
b5aeb95
 
 
 
 
 
3986b4b
 
 
 
 
 
b5aeb95
09f030f
2f957f0
 
c8df7a5
09f030f
 
 
2f957f0
09f030f
 
 
 
 
 
 
 
2f957f0
 
 
4df6952
 
 
2f957f0
 
09f030f
 
 
 
 
 
 
2f957f0
 
 
4df6952
2f957f0
 
 
 
 
 
09f030f
 
 
 
 
 
 
 
 
 
 
2f957f0
 
 
 
 
4df6952
2f957f0
 
 
09f030f
4df6952
2f957f0
09f030f
 
2f957f0
c8df7a5
09f030f
 
 
 
 
 
3986b4b
2f957f0
 
3986b4b
 
 
 
 
 
2f957f0
3986b4b
 
 
 
2f957f0
 
 
09f030f
2f957f0
09f030f
 
 
 
 
 
 
 
2f957f0
09f030f
 
 
 
 
 
7014802
09f030f
 
 
 
3986b4b
2f957f0
 
 
 
 
 
3986b4b
 
 
 
 
2f957f0
 
 
 
 
 
 
 
 
683b0bb
3986b4b
 
 
 
2f957f0
3986b4b
2f957f0
 
 
 
 
09f030f
7014802
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3986b4b
09f030f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
import gradio as gr
import numpy as np
import torch

import faiss
import spaces

from datasets import load_dataset
from peft import LoraConfig, PeftModel, TaskType, get_peft_model, prepare_model_for_kbit_training
from sentence_transformers import SentenceTransformer
from transformers import (
    AutoConfig,
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    DataCollatorForLanguageModeling,
    Trainer,
    TrainingArguments,
    pipeline,
)

NUM_EXAMPLES_FOR_FINETUNING = 50  # Constant for the number of examples to use for finetuning
TEXT_PIPELINE = None  # Global to store the custom R1 text generation pipeline
COMPARISON_PIPELINE = None  # Global to store the official R1 text generation pipeline


def _load_model_and_tokenizer(model_name: str, subfolder: str = None, quantization_config: BitsAndBytesConfig = None, device_map: str = "auto", trust_remote_code: bool = True) -> tuple[AutoModelForCausalLM, AutoTokenizer]:
    """
    Helper function to load a causal language model and its tokenizer.

    Args:
        model_name (str): The name or path of the pretrained model.
        subfolder (str, optional): Subfolder within the model repository. Defaults to None.
        quantization_config (BitsAndBytesConfig, optional): Configuration for quantization. Defaults to None.
        device_map (str, optional): Device mapping for model loading. Defaults to "auto".
        trust_remote_code (bool, optional): Trust remote code for custom models. Defaults to True.

    Returns:
        tuple[AutoModelForCausalLM, AutoTokenizer]: The loaded model and tokenizer.
    """
    config = AutoConfig.from_pretrained(model_name, subfolder=subfolder, trust_remote_code=trust_remote_code)
    tokenizer = AutoTokenizer.from_pretrained(model_name, subfolder=subfolder, trust_remote_code=trust_remote_code)
    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        subfolder=subfolder,
        config=config,
        quantization_config=quantization_config,
        device_map=device_map,
        trust_remote_code=trust_remote_code
    )
    return model, tokenizer


@spaces.GPU(duration=300)
def finetune_small_subset() -> str:
    """
    Fine-tunes the custom R1 model on a small subset of the ServiceNow-AI/R1-Distill-SFT dataset.

    Steps:
      1) Loads the model from "wuhp/myr1" (using files from the "myr1" subfolder via trust_remote_code).
      2) Applies 4-bit quantization and prepares for QLoRA training.
      3) Fine-tunes on the dataset (mapping "problem" to prompt and "solution" to target).
      4) Saves the LoRA adapter to "finetuned_myr1".
      5) Reloads the adapter for inference.

    Returns:
        str: A message indicating finetuning completion.
    """
    ds = load_dataset("ServiceNow-AI/R1-Distill-SFT", "v0", split="train")
    ds = ds.select(range(min(NUM_EXAMPLES_FOR_FINETUNING, len(ds))))

    bnb_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_compute_dtype=torch.bfloat16,
        bnb_4bit_use_double_quant=True,
        bnb_4bit_quant_type="nf4",
    )
    base_model, tokenizer = _load_model_and_tokenizer(
        "wuhp/myr1", subfolder="myr1", quantization_config=bnb_config, device_map="auto"
    )

    base_model = prepare_model_for_kbit_training(base_model)

    lora_config = LoraConfig(
        r=16,
        lora_alpha=32,
        lora_dropout=0.05,
        bias="none",
        target_modules=["q_proj", "v_proj"],
        task_type=TaskType.CAUSAL_LM,
    )
    lora_model = get_peft_model(base_model, lora_config)

    def tokenize_fn(ex):
        text = (
            f"Problem: {ex['problem']}\n\n"
            f"Solution: {ex['solution']}"
        )
        return tokenizer(text, truncation=True, max_length=512)

    ds = ds.map(tokenize_fn, batched=False, remove_columns=ds.column_names)
    ds.set_format("torch")

    collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)

    training_args = TrainingArguments(
        output_dir="finetuned_myr1",
        num_train_epochs=1,
        per_device_train_batch_size=1,
        gradient_accumulation_steps=2,
        logging_steps=5,
        save_steps=999999,
        save_total_limit=1,
        fp16=False,
    )

    trainer = Trainer(
        model=lora_model,
        args=training_args,
        train_dataset=ds,
        data_collator=collator,
    )
    trainer.train()

    trainer.model.save_pretrained("finetuned_myr1")
    tokenizer.save_pretrained("finetuned_myr1")

    base_model_2, tokenizer_2 = _load_model_and_tokenizer(
        "wuhp/myr1", subfolder="myr1", quantization_config=bnb_config, device_map="auto"
    )
    base_model_2 = prepare_model_for_kbit_training(base_model_2)

    lora_model_2 = PeftModel.from_pretrained(
        base_model_2,
        "finetuned_myr1",
    )

    global TEXT_PIPELINE
    TEXT_PIPELINE = pipeline("text-generation", model=lora_model_2, tokenizer=tokenizer_2)

    return "Finetuning complete. Model loaded for inference."


def ensure_pipeline() -> pipeline:
    """
    Loads the base model (without LoRA) if no fine-tuned model is available.

    Returns:
        pipeline: The text generation pipeline using the custom R1 model.
    """
    global TEXT_PIPELINE
    if TEXT_PIPELINE is None:
        bnb_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=torch.bfloat16,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type="nf4",
        )
        base_model, tokenizer = _load_model_and_tokenizer(
            "wuhp/myr1", subfolder="myr1", quantization_config=bnb_config, device_map="auto"
        )
        TEXT_PIPELINE = pipeline("text-generation", model=base_model, tokenizer=tokenizer)
    return TEXT_PIPELINE


def ensure_comparison_pipeline() -> pipeline:
    """
    Loads the official R1 model pipeline if not already loaded.

    Returns:
        pipeline: The text generation pipeline using the official R1 model.
    """
    global COMPARISON_PIPELINE
    if COMPARISON_PIPELINE is None:
        config = AutoConfig.from_pretrained("deepseek-ai/DeepSeek-R1-Distill-Llama-8B")
        tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-R1-Distill-Llama-8B")
        model = AutoModelForCausalLM.from_pretrained(
            "deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
            config=config,
            device_map="auto"
        )
        COMPARISON_PIPELINE = pipeline("text-generation", model=model, tokenizer=tokenizer)
    return COMPARISON_PIPELINE


@spaces.GPU(duration=120)
def predict(
    prompt: str,
    temperature: float,
    top_p: float,
    min_new_tokens: int,
    max_new_tokens: int
) -> str:
    """
    Direct generation without retrieval using the custom R1 model.

    Args:
        prompt (str): The input prompt for text generation.
        temperature (float): Sampling temperature.
        top_p (float): Top-p sampling probability.
        min_new_tokens (int): Minimum number of new tokens to generate.
        max_new_tokens (int): Maximum number of new tokens to generate.

    Returns:
        str: The generated text output with "Thinking Process" and "Solution" sections.
    """
    pipe = ensure_pipeline()
    thinking_prefix = "**Thinking Process:**\n"
    solution_prefix = "\n**Solution:**\n"
    formatted_output = thinking_prefix

    output = pipe(
        prompt,
        temperature=float(temperature),
        top_p=float(top_p),
        min_new_tokens=int(min_new_tokens),
        max_new_tokens=int(max_new_tokens),
        do_sample=True
    )[0]["generated_text"]

    formatted_output += output.strip()

    return formatted_output


@spaces.GPU(duration=120)
def compare_models(
    prompt: str,
    temperature: float,
    top_p: float,
    min_new_tokens: int,
    max_new_tokens: int
) -> tuple[str, str]:
    """
    Compare outputs between your custom R1 model and the official R1 model.

    Args:
        prompt (str): The input prompt for text generation.
        temperature (float): Sampling temperature.
        top_p (float): Top-p sampling probability.
        min_new_tokens (int): Minimum number of new tokens to generate.
        max_new_tokens (int): Maximum number of new tokens to generate.

    Returns:
        tuple[str, str]: A tuple containing the formatted generated text from the custom R1 and official R1 models, each with "Thinking Process" and "Solution" sections.
    """
    local_pipe = ensure_pipeline()
    comp_pipe = ensure_comparison_pipeline()

    def format_comparison_output(model_name, raw_output):
        thinking_prefix = f"**{model_name} - Thinking Process:**\n"
        solution_prefix = f"\n**{model_name} - Solution:**\n"
        formatted_output = thinking_prefix
        formatted_output += raw_output.strip()
        return formatted_output

    local_out_raw = local_pipe(
        prompt,
        temperature=float(temperature),
        top_p=float(top_p),
        min_new_tokens=int(min_new_tokens),
        max_new_tokens=int(max_new_tokens),
        do_sample=True
    )[0]["generated_text"]

    comp_out_raw = comp_pipe(
        prompt,
        temperature=float(temperature),
        top_p=float(top_p),
        min_new_tokens=int(min_new_tokens),
        max_new_tokens=int(max_new_tokens),
        do_sample=True
    )[0]["generated_text"]

    local_out_formatted = format_comparison_output("Custom R1", local_out_raw)
    comp_out_formatted = format_comparison_output("Official R1", comp_out_raw)

    return local_out_formatted, comp_out_formatted


class ConversationRetriever:
    """
    A FAISS-based retriever using SentenceTransformer for embedding.

    This class indexes text chunks using FAISS and SentenceTransformer embeddings
    to enable efficient similarity search for retrieval-augmented generation.
    """
    def __init__(self, model_name: str = "sentence-transformers/all-MiniLM-L6-v2", embed_dim: int = 384):
        """
        Initializes the ConversationRetriever.

        Args:
            model_name (str, optional): Name of the SentenceTransformer model. Defaults to "sentence-transformers/all-MiniLM-L6-v2".
            embed_dim (int, optional): Dimensionality of the embeddings. Defaults to 384.
        """
        self.embed_model = SentenceTransformer(model_name)
        self.embed_dim = embed_dim
        self.index = faiss.IndexFlatL2(embed_dim)
        self.texts = []
        self.vectors = []
        self.ids = []
        self.id_counter = 0

    def add_text(self, text: str):
        """
        Adds text to the retriever's index.

        Args:
            text (str): The text to add.
        """
        if not text.strip():
            return
        emb = self.embed_model.encode([text], convert_to_numpy=True)
        vec = emb[0].astype(np.float32)
        self.index.add(vec.reshape(1, -1))
        self.texts.append(text)
        self.vectors.append(vec)
        self.ids.append(self.id_counter)
        self.id_counter += 1

    def search(self, query: str, top_k: int = 3) -> list[tuple[str, float]]:
        """
        Searches the retriever index for texts similar to the query.

        Args:
            query (str): The query text.
            top_k (int, optional): Number of top results to retrieve. Defaults to 3.

        Returns:
            list[tuple[str, float]]: A list of tuples, where each tuple contains (text, distance).
        """
        q_emb = self.embed_model.encode([query], convert_to_numpy=True).astype(np.float32)
        q_vec = q_emb[0].reshape(1, -1)
        distances, indices = self.index.search(q_vec, top_k)
        results = []
        for dist, idx in zip(distances[0], indices[0]):
            if idx < len(self.texts):
                results.append((self.texts[idx], dist))
        return results


retriever = ConversationRetriever()


def build_rag_prompt(user_query: str, retrieved_chunks: list[tuple[str, float]]) -> str:
    """
    Builds a prompt for retrieval-augmented generation.

    Args:
        user_query (str): The user's input query.
        retrieved_chunks (list[tuple[str, float]]): List of retrieved text chunks and their distances.

    Returns:
        str: The formatted prompt string including instructions for step-by-step thinking and using context.
    """
    context_str = ""
    if retrieved_chunks:
        context_str += "**Relevant Context:**\n"
        for i, (chunk, dist) in enumerate(retrieved_chunks):
            context_str += f"Chunk #{i+1} (similarity ~ {dist:.2f}):\n> {chunk}\n\n"

    prompt_instruction = "Please provide a detailed answer, showing your thinking process step-by-step before stating the final answer. Use the provided context if relevant."
    prompt = (
        f"**User Query:**\n{user_query}\n\n"
        f"{context_str}\n"
        f"{prompt_instruction}\n\n"
        "**Answer:**\n"
    )
    return prompt


@spaces.GPU(duration=120)
def chat_rag(
    user_input: str,
    history: list[list[str]],
    temperature: float,
    top_p: float,
    min_new_tokens: int,
    max_new_tokens: int
) -> tuple[list[list[str]], list[list[str]]]:
    """
    Chat with retrieval augmentation using the custom R1 model.

    Args:
        user_input (str): The user's chat input.
        history (list[list[str]]): The chat history.
        temperature (float): Sampling temperature.
        top_p (float): Top-p sampling probability.
        min_new_tokens (int): Minimum number of new tokens to generate.
        max_new_tokens (int): Maximum number of new tokens to generate.

    Returns:
        tuple[list[list[str]], list[list[str]]]: Updated chat history and chatbot display history, with formatted assistant replies.
    """
    pipe = ensure_pipeline()
    retriever.add_text(f"User: {user_input}")
    top_k = 3
    results = retriever.search(user_input, top_k=top_k)
    prompt = build_rag_prompt(user_input, results)

    thinking_prefix = "**Thinking Process:**\n"
    solution_prefix = "\n**Solution:**\n"
    formatted_output = thinking_prefix

    output = pipe(
        prompt,
        temperature=float(temperature),
        top_p=float(top_p),
        min_new_tokens=int(min_new_tokens),
        max_new_tokens=int(max_new_tokens),
        do_sample=True
    )[0]["generated_text"]

    formatted_output += output.strip()
    assistant_reply = formatted_output

    if assistant_reply.startswith(prompt):
        assistant_reply = assistant_reply[len(prompt):].strip()
    else:
        assistant_reply = assistant_reply.strip()

    retriever.add_text(f"Assistant: {assistant_reply}")
    history.append([user_input, assistant_reply])
    return history, history


# Build the Gradio interface.
with gr.Blocks() as demo:
    gr.Markdown("# QLoRA Fine-tuning & RAG-based Chat Demo using Custom R1 Model")
    gr.Markdown("---")

    gr.Markdown("## ⚙️ Fine-tuning (Optional)")
    gr.Markdown("This section allows you to fine-tune the custom R1 model on a small subset of the ServiceNow dataset. This step is optional but can potentially improve the model's performance on ServiceNow-related tasks. **Note:** This process may take up to 5 minutes.")
    finetune_btn = gr.Button("🚀 Start Fine-tuning (QLoRA)")
    status_box = gr.Textbox(label="Fine-tuning Status", interactive=False)
    finetune_btn.click(fn=finetune_small_subset, outputs=status_box)
    gr.Markdown("---")

    gr.Markdown("## ✍️ Direct Generation (No Retrieval)")
    gr.Markdown("Enter a prompt below to generate text directly using the custom R1 model. This is standard text generation without retrieval augmentation.")
    prompt_in = gr.Textbox(lines=3, label="Input Prompt", placeholder="Enter your prompt here...")
    temperature = gr.Slider(0.0, 1.5, step=0.1, value=0.7, label="Temperature (Creativity)")
    top_p = gr.Slider(0.0, 1.0, step=0.05, value=0.9, label="Top-p (Sampling Nucleus)")
    min_tokens = gr.Slider(1, 2500, value=50, step=10, label="Min New Tokens")
    max_tokens = gr.Slider(1, 2500, value=200, step=50, label="Max New Tokens")
    output_box = gr.Textbox(label="Custom R1 Output", lines=8, interactive=False)
    gen_btn = gr.Button("✨ Generate Text")
    gen_btn.click(
        fn=predict,
        inputs=[prompt_in, temperature, top_p, min_tokens, max_tokens],
        outputs=output_box
    )
    gr.Markdown("---")

    gr.Markdown("## 🆚 Compare Custom R1 vs Official R1")
    gr.Markdown("Enter a prompt to compare the text generation of your fine-tuned custom R1 model with the official DeepSeek-R1-Distill-Llama-8B model.")
    compare_prompt_in = gr.Textbox(lines=3, label="Comparison Prompt", placeholder="Enter prompt for comparison...")
    compare_btn = gr.Button("⚖️ Compare Models")
    out_custom = gr.Textbox(label="Custom R1 Output", lines=6, interactive=False)
    out_official = gr.Textbox(label="Official R1 Output", lines=6, interactive=False)
    compare_btn.click(
        fn=compare_models,
        inputs=[compare_prompt_in, temperature, top_p, min_tokens, max_tokens],
        outputs=[out_custom, out_official]
    )
    gr.Markdown("---")

    gr.Markdown("## 💬 Chat with Retrieval-Augmented Memory (RAG)")
    gr.Markdown("Chat with the custom R1 model, enhanced with a retrieval-augmented memory. The model will retrieve relevant information based on your queries to provide more informed responses.")
    with gr.Row():
        with gr.Column():
            chatbot = gr.Chatbot(label="RAG Chatbot")
            chat_state = gr.State([])
            user_input = gr.Textbox(
                show_label=False,
                placeholder="Ask a question to the RAG Chatbot...",
                lines=2
            )
            send_btn = gr.Button("➡️ Send")
    user_input.submit(
        fn=chat_rag,
        inputs=[user_input, chat_state, temperature, top_p, min_tokens, max_tokens],
        outputs=[chat_state, chatbot]
    )
    send_btn.click(
        fn=chat_rag,
        inputs=[user_input, chat_state, temperature, top_p, min_tokens, max_tokens],
        outputs=[chat_state, chatbot]
    )
    gr.Markdown("---")


demo.launch()