File size: 18,062 Bytes
5755412 09f030f 4cf237b 09f030f 2f957f0 09f030f 13b1681 09f030f f82c314 09f030f f82c314 13b1681 f82c314 eccd8f6 54e45c0 09f030f 3986b4b 13b1681 2f957f0 09f030f b5aeb95 2f957f0 09f030f b26485f 4df7266 09f030f c8df7a5 09f030f b26485f bfe03fe 09f030f f82c314 13b1681 4df6952 13b1681 1ce8e5a 13b1681 09f030f eccd8f6 f82c314 13b1681 1ce8e5a 13b1681 4e66e3d 4fa9540 4df6952 4fa9540 4e66e3d 4fa9540 f82c314 4e66e3d f82c314 4e66e3d f82c314 13b1681 3986b4b c8df7a5 f82c314 13b1681 f82c314 4cf237b f82c314 13b1681 f82c314 3986b4b 09f030f f82c314 13b1681 1ce8e5a 13b1681 f82c314 3986b4b 13b1681 b5aeb95 09f030f b26485f c8df7a5 09f030f b26485f f82c314 13b1681 f82c314 09f030f 4cf237b 13b1681 f82c314 b446d41 09f030f b5aeb95 4df7266 09f030f b5aeb95 2f957f0 b5aeb95 09f030f 2f957f0 09f030f b26485f 4df7266 09f030f 3986b4b b26485f 4e66e3d 3986b4b f82c314 4e66e3d f82c314 4e66e3d 3986b4b 683b0bb 3986b4b eccd8f6 09f030f 2f957f0 09f030f b5aeb95 4df7266 09f030f 7014802 09f030f 3986b4b b5aeb95 3986b4b 683b0bb 3986b4b b5aeb95 3986b4b b5aeb95 3986b4b b5aeb95 09f030f 2f957f0 c8df7a5 09f030f 2f957f0 09f030f 2f957f0 4df6952 2f957f0 09f030f 2f957f0 4df6952 2f957f0 09f030f 2f957f0 4df6952 2f957f0 09f030f 4df6952 2f957f0 09f030f 2f957f0 c8df7a5 09f030f 3986b4b 2f957f0 3986b4b 2f957f0 3986b4b 2f957f0 09f030f 2f957f0 09f030f 2f957f0 09f030f 7014802 09f030f 3986b4b 2f957f0 3986b4b 2f957f0 683b0bb 3986b4b 2f957f0 3986b4b 2f957f0 09f030f 7014802 3986b4b 09f030f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 |
import gradio as gr
import numpy as np
import torch
import faiss
import spaces
from datasets import load_dataset
from peft import LoraConfig, PeftModel, TaskType, get_peft_model, prepare_model_for_kbit_training
from sentence_transformers import SentenceTransformer
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
DataCollatorForLanguageModeling,
Trainer,
TrainingArguments,
pipeline,
)
NUM_EXAMPLES_FOR_FINETUNING = 50 # Constant for the number of examples to use for finetuning
TEXT_PIPELINE = None # Global to store the custom R1 text generation pipeline
COMPARISON_PIPELINE = None # Global to store the official R1 text generation pipeline
def _load_model_and_tokenizer(model_name: str, subfolder: str = None, quantization_config: BitsAndBytesConfig = None, device_map: str = "auto", trust_remote_code: bool = True) -> tuple[AutoModelForCausalLM, AutoTokenizer]:
"""
Helper function to load a causal language model and its tokenizer.
Args:
model_name (str): The name or path of the pretrained model.
subfolder (str, optional): Subfolder within the model repository. Defaults to None.
quantization_config (BitsAndBytesConfig, optional): Configuration for quantization. Defaults to None.
device_map (str, optional): Device mapping for model loading. Defaults to "auto".
trust_remote_code (bool, optional): Trust remote code for custom models. Defaults to True.
Returns:
tuple[AutoModelForCausalLM, AutoTokenizer]: The loaded model and tokenizer.
"""
config = AutoConfig.from_pretrained(model_name, subfolder=subfolder, trust_remote_code=trust_remote_code)
tokenizer = AutoTokenizer.from_pretrained(model_name, subfolder=subfolder, trust_remote_code=trust_remote_code)
model = AutoModelForCausalLM.from_pretrained(
model_name,
subfolder=subfolder,
config=config,
quantization_config=quantization_config,
device_map=device_map,
trust_remote_code=trust_remote_code
)
return model, tokenizer
@spaces.GPU(duration=300)
def finetune_small_subset() -> str:
"""
Fine-tunes the custom R1 model on a small subset of the ServiceNow-AI/R1-Distill-SFT dataset.
Steps:
1) Loads the model from "wuhp/myr1" (using files from the "myr1" subfolder via trust_remote_code).
2) Applies 4-bit quantization and prepares for QLoRA training.
3) Fine-tunes on the dataset (mapping "problem" to prompt and "solution" to target).
4) Saves the LoRA adapter to "finetuned_myr1".
5) Reloads the adapter for inference.
Returns:
str: A message indicating finetuning completion.
"""
ds = load_dataset("ServiceNow-AI/R1-Distill-SFT", "v0", split="train")
ds = ds.select(range(min(NUM_EXAMPLES_FOR_FINETUNING, len(ds))))
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
)
base_model, tokenizer = _load_model_and_tokenizer(
"wuhp/myr1", subfolder="myr1", quantization_config=bnb_config, device_map="auto"
)
base_model = prepare_model_for_kbit_training(base_model)
lora_config = LoraConfig(
r=16,
lora_alpha=32,
lora_dropout=0.05,
bias="none",
target_modules=["q_proj", "v_proj"],
task_type=TaskType.CAUSAL_LM,
)
lora_model = get_peft_model(base_model, lora_config)
def tokenize_fn(ex):
text = (
f"Problem: {ex['problem']}\n\n"
f"Solution: {ex['solution']}"
)
return tokenizer(text, truncation=True, max_length=512)
ds = ds.map(tokenize_fn, batched=False, remove_columns=ds.column_names)
ds.set_format("torch")
collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
training_args = TrainingArguments(
output_dir="finetuned_myr1",
num_train_epochs=1,
per_device_train_batch_size=1,
gradient_accumulation_steps=2,
logging_steps=5,
save_steps=999999,
save_total_limit=1,
fp16=False,
)
trainer = Trainer(
model=lora_model,
args=training_args,
train_dataset=ds,
data_collator=collator,
)
trainer.train()
trainer.model.save_pretrained("finetuned_myr1")
tokenizer.save_pretrained("finetuned_myr1")
base_model_2, tokenizer_2 = _load_model_and_tokenizer(
"wuhp/myr1", subfolder="myr1", quantization_config=bnb_config, device_map="auto"
)
base_model_2 = prepare_model_for_kbit_training(base_model_2)
lora_model_2 = PeftModel.from_pretrained(
base_model_2,
"finetuned_myr1",
)
global TEXT_PIPELINE
TEXT_PIPELINE = pipeline("text-generation", model=lora_model_2, tokenizer=tokenizer_2)
return "Finetuning complete. Model loaded for inference."
def ensure_pipeline() -> pipeline:
"""
Loads the base model (without LoRA) if no fine-tuned model is available.
Returns:
pipeline: The text generation pipeline using the custom R1 model.
"""
global TEXT_PIPELINE
if TEXT_PIPELINE is None:
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
)
base_model, tokenizer = _load_model_and_tokenizer(
"wuhp/myr1", subfolder="myr1", quantization_config=bnb_config, device_map="auto"
)
TEXT_PIPELINE = pipeline("text-generation", model=base_model, tokenizer=tokenizer)
return TEXT_PIPELINE
def ensure_comparison_pipeline() -> pipeline:
"""
Loads the official R1 model pipeline if not already loaded.
Returns:
pipeline: The text generation pipeline using the official R1 model.
"""
global COMPARISON_PIPELINE
if COMPARISON_PIPELINE is None:
config = AutoConfig.from_pretrained("deepseek-ai/DeepSeek-R1-Distill-Llama-8B")
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-R1-Distill-Llama-8B")
model = AutoModelForCausalLM.from_pretrained(
"deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
config=config,
device_map="auto"
)
COMPARISON_PIPELINE = pipeline("text-generation", model=model, tokenizer=tokenizer)
return COMPARISON_PIPELINE
@spaces.GPU(duration=120)
def predict(
prompt: str,
temperature: float,
top_p: float,
min_new_tokens: int,
max_new_tokens: int
) -> str:
"""
Direct generation without retrieval using the custom R1 model.
Args:
prompt (str): The input prompt for text generation.
temperature (float): Sampling temperature.
top_p (float): Top-p sampling probability.
min_new_tokens (int): Minimum number of new tokens to generate.
max_new_tokens (int): Maximum number of new tokens to generate.
Returns:
str: The generated text output with "Thinking Process" and "Solution" sections.
"""
pipe = ensure_pipeline()
thinking_prefix = "**Thinking Process:**\n"
solution_prefix = "\n**Solution:**\n"
formatted_output = thinking_prefix
output = pipe(
prompt,
temperature=float(temperature),
top_p=float(top_p),
min_new_tokens=int(min_new_tokens),
max_new_tokens=int(max_new_tokens),
do_sample=True
)[0]["generated_text"]
formatted_output += output.strip()
return formatted_output
@spaces.GPU(duration=120)
def compare_models(
prompt: str,
temperature: float,
top_p: float,
min_new_tokens: int,
max_new_tokens: int
) -> tuple[str, str]:
"""
Compare outputs between your custom R1 model and the official R1 model.
Args:
prompt (str): The input prompt for text generation.
temperature (float): Sampling temperature.
top_p (float): Top-p sampling probability.
min_new_tokens (int): Minimum number of new tokens to generate.
max_new_tokens (int): Maximum number of new tokens to generate.
Returns:
tuple[str, str]: A tuple containing the formatted generated text from the custom R1 and official R1 models, each with "Thinking Process" and "Solution" sections.
"""
local_pipe = ensure_pipeline()
comp_pipe = ensure_comparison_pipeline()
def format_comparison_output(model_name, raw_output):
thinking_prefix = f"**{model_name} - Thinking Process:**\n"
solution_prefix = f"\n**{model_name} - Solution:**\n"
formatted_output = thinking_prefix
formatted_output += raw_output.strip()
return formatted_output
local_out_raw = local_pipe(
prompt,
temperature=float(temperature),
top_p=float(top_p),
min_new_tokens=int(min_new_tokens),
max_new_tokens=int(max_new_tokens),
do_sample=True
)[0]["generated_text"]
comp_out_raw = comp_pipe(
prompt,
temperature=float(temperature),
top_p=float(top_p),
min_new_tokens=int(min_new_tokens),
max_new_tokens=int(max_new_tokens),
do_sample=True
)[0]["generated_text"]
local_out_formatted = format_comparison_output("Custom R1", local_out_raw)
comp_out_formatted = format_comparison_output("Official R1", comp_out_raw)
return local_out_formatted, comp_out_formatted
class ConversationRetriever:
"""
A FAISS-based retriever using SentenceTransformer for embedding.
This class indexes text chunks using FAISS and SentenceTransformer embeddings
to enable efficient similarity search for retrieval-augmented generation.
"""
def __init__(self, model_name: str = "sentence-transformers/all-MiniLM-L6-v2", embed_dim: int = 384):
"""
Initializes the ConversationRetriever.
Args:
model_name (str, optional): Name of the SentenceTransformer model. Defaults to "sentence-transformers/all-MiniLM-L6-v2".
embed_dim (int, optional): Dimensionality of the embeddings. Defaults to 384.
"""
self.embed_model = SentenceTransformer(model_name)
self.embed_dim = embed_dim
self.index = faiss.IndexFlatL2(embed_dim)
self.texts = []
self.vectors = []
self.ids = []
self.id_counter = 0
def add_text(self, text: str):
"""
Adds text to the retriever's index.
Args:
text (str): The text to add.
"""
if not text.strip():
return
emb = self.embed_model.encode([text], convert_to_numpy=True)
vec = emb[0].astype(np.float32)
self.index.add(vec.reshape(1, -1))
self.texts.append(text)
self.vectors.append(vec)
self.ids.append(self.id_counter)
self.id_counter += 1
def search(self, query: str, top_k: int = 3) -> list[tuple[str, float]]:
"""
Searches the retriever index for texts similar to the query.
Args:
query (str): The query text.
top_k (int, optional): Number of top results to retrieve. Defaults to 3.
Returns:
list[tuple[str, float]]: A list of tuples, where each tuple contains (text, distance).
"""
q_emb = self.embed_model.encode([query], convert_to_numpy=True).astype(np.float32)
q_vec = q_emb[0].reshape(1, -1)
distances, indices = self.index.search(q_vec, top_k)
results = []
for dist, idx in zip(distances[0], indices[0]):
if idx < len(self.texts):
results.append((self.texts[idx], dist))
return results
retriever = ConversationRetriever()
def build_rag_prompt(user_query: str, retrieved_chunks: list[tuple[str, float]]) -> str:
"""
Builds a prompt for retrieval-augmented generation.
Args:
user_query (str): The user's input query.
retrieved_chunks (list[tuple[str, float]]): List of retrieved text chunks and their distances.
Returns:
str: The formatted prompt string including instructions for step-by-step thinking and using context.
"""
context_str = ""
if retrieved_chunks:
context_str += "**Relevant Context:**\n"
for i, (chunk, dist) in enumerate(retrieved_chunks):
context_str += f"Chunk #{i+1} (similarity ~ {dist:.2f}):\n> {chunk}\n\n"
prompt_instruction = "Please provide a detailed answer, showing your thinking process step-by-step before stating the final answer. Use the provided context if relevant."
prompt = (
f"**User Query:**\n{user_query}\n\n"
f"{context_str}\n"
f"{prompt_instruction}\n\n"
"**Answer:**\n"
)
return prompt
@spaces.GPU(duration=120)
def chat_rag(
user_input: str,
history: list[list[str]],
temperature: float,
top_p: float,
min_new_tokens: int,
max_new_tokens: int
) -> tuple[list[list[str]], list[list[str]]]:
"""
Chat with retrieval augmentation using the custom R1 model.
Args:
user_input (str): The user's chat input.
history (list[list[str]]): The chat history.
temperature (float): Sampling temperature.
top_p (float): Top-p sampling probability.
min_new_tokens (int): Minimum number of new tokens to generate.
max_new_tokens (int): Maximum number of new tokens to generate.
Returns:
tuple[list[list[str]], list[list[str]]]: Updated chat history and chatbot display history, with formatted assistant replies.
"""
pipe = ensure_pipeline()
retriever.add_text(f"User: {user_input}")
top_k = 3
results = retriever.search(user_input, top_k=top_k)
prompt = build_rag_prompt(user_input, results)
thinking_prefix = "**Thinking Process:**\n"
solution_prefix = "\n**Solution:**\n"
formatted_output = thinking_prefix
output = pipe(
prompt,
temperature=float(temperature),
top_p=float(top_p),
min_new_tokens=int(min_new_tokens),
max_new_tokens=int(max_new_tokens),
do_sample=True
)[0]["generated_text"]
formatted_output += output.strip()
assistant_reply = formatted_output
if assistant_reply.startswith(prompt):
assistant_reply = assistant_reply[len(prompt):].strip()
else:
assistant_reply = assistant_reply.strip()
retriever.add_text(f"Assistant: {assistant_reply}")
history.append([user_input, assistant_reply])
return history, history
# Build the Gradio interface.
with gr.Blocks() as demo:
gr.Markdown("# QLoRA Fine-tuning & RAG-based Chat Demo using Custom R1 Model")
gr.Markdown("---")
gr.Markdown("## ⚙️ Fine-tuning (Optional)")
gr.Markdown("This section allows you to fine-tune the custom R1 model on a small subset of the ServiceNow dataset. This step is optional but can potentially improve the model's performance on ServiceNow-related tasks. **Note:** This process may take up to 5 minutes.")
finetune_btn = gr.Button("🚀 Start Fine-tuning (QLoRA)")
status_box = gr.Textbox(label="Fine-tuning Status", interactive=False)
finetune_btn.click(fn=finetune_small_subset, outputs=status_box)
gr.Markdown("---")
gr.Markdown("## ✍️ Direct Generation (No Retrieval)")
gr.Markdown("Enter a prompt below to generate text directly using the custom R1 model. This is standard text generation without retrieval augmentation.")
prompt_in = gr.Textbox(lines=3, label="Input Prompt", placeholder="Enter your prompt here...")
temperature = gr.Slider(0.0, 1.5, step=0.1, value=0.7, label="Temperature (Creativity)")
top_p = gr.Slider(0.0, 1.0, step=0.05, value=0.9, label="Top-p (Sampling Nucleus)")
min_tokens = gr.Slider(1, 2500, value=50, step=10, label="Min New Tokens")
max_tokens = gr.Slider(1, 2500, value=200, step=50, label="Max New Tokens")
output_box = gr.Textbox(label="Custom R1 Output", lines=8, interactive=False)
gen_btn = gr.Button("✨ Generate Text")
gen_btn.click(
fn=predict,
inputs=[prompt_in, temperature, top_p, min_tokens, max_tokens],
outputs=output_box
)
gr.Markdown("---")
gr.Markdown("## 🆚 Compare Custom R1 vs Official R1")
gr.Markdown("Enter a prompt to compare the text generation of your fine-tuned custom R1 model with the official DeepSeek-R1-Distill-Llama-8B model.")
compare_prompt_in = gr.Textbox(lines=3, label="Comparison Prompt", placeholder="Enter prompt for comparison...")
compare_btn = gr.Button("⚖️ Compare Models")
out_custom = gr.Textbox(label="Custom R1 Output", lines=6, interactive=False)
out_official = gr.Textbox(label="Official R1 Output", lines=6, interactive=False)
compare_btn.click(
fn=compare_models,
inputs=[compare_prompt_in, temperature, top_p, min_tokens, max_tokens],
outputs=[out_custom, out_official]
)
gr.Markdown("---")
gr.Markdown("## 💬 Chat with Retrieval-Augmented Memory (RAG)")
gr.Markdown("Chat with the custom R1 model, enhanced with a retrieval-augmented memory. The model will retrieve relevant information based on your queries to provide more informed responses.")
with gr.Row():
with gr.Column():
chatbot = gr.Chatbot(label="RAG Chatbot")
chat_state = gr.State([])
user_input = gr.Textbox(
show_label=False,
placeholder="Ask a question to the RAG Chatbot...",
lines=2
)
send_btn = gr.Button("➡️ Send")
user_input.submit(
fn=chat_rag,
inputs=[user_input, chat_state, temperature, top_p, min_tokens, max_tokens],
outputs=[chat_state, chatbot]
)
send_btn.click(
fn=chat_rag,
inputs=[user_input, chat_state, temperature, top_p, min_tokens, max_tokens],
outputs=[chat_state, chatbot]
)
gr.Markdown("---")
demo.launch() |