Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
-
import torch
|
4 |
from datasets import load_dataset
|
|
|
5 |
from transformers import (
|
6 |
AutoConfig,
|
7 |
AutoTokenizer,
|
@@ -13,28 +13,28 @@ from transformers import (
|
|
13 |
)
|
14 |
|
15 |
##############################################################################
|
16 |
-
#
|
17 |
-
# 1) No GPU calls in top-level code
|
18 |
-
# 2) Decorate GPU-using functions with @spaces.GPU(...)
|
19 |
##############################################################################
|
|
|
|
|
20 |
|
21 |
-
|
|
|
22 |
|
23 |
-
# We'll train on a subset of WikiText-2 to keep it short for ZeroGPU demonstration.
|
24 |
-
NUM_EXAMPLES = 1000
|
25 |
|
26 |
-
@spaces.GPU(duration=
|
27 |
def finetune_small_subset():
|
28 |
"""
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
- Reloads as pipeline for inference
|
35 |
"""
|
|
|
36 |
# 1) Load dataset
|
37 |
ds = load_dataset("wikitext", "wikitext-2-raw-v1", split="train")
|
|
|
38 |
ds = ds.select(range(min(NUM_EXAMPLES, len(ds))))
|
39 |
|
40 |
# 2) Load config, tokenizer, model
|
@@ -48,27 +48,17 @@ def finetune_small_subset():
|
|
48 |
subfolder="myr1",
|
49 |
trust_remote_code=True
|
50 |
)
|
51 |
-
|
52 |
-
# If your GPU supports BF16 (e.g. A100), you can try:
|
53 |
-
# bf16 = True, and fp16 = False
|
54 |
-
# Otherwise, just keep fp16=False
|
55 |
-
# We'll do bf16=False so we definitely skip half-precision
|
56 |
-
# (which avoids the "Attempting to unscale FP16 gradients" error).
|
57 |
-
bf16 = False
|
58 |
-
fp16 = False
|
59 |
-
|
60 |
model = AutoModelForCausalLM.from_pretrained(
|
61 |
"wuhp/myr1",
|
62 |
subfolder="myr1",
|
63 |
config=config,
|
64 |
-
#
|
65 |
-
#
|
66 |
-
torch_dtype=torch.bfloat16 if bf16 else torch.float32,
|
67 |
-
device_map="auto",
|
68 |
trust_remote_code=True
|
69 |
)
|
70 |
|
71 |
-
# 3) Tokenize
|
72 |
def tokenize_fn(ex):
|
73 |
return tokenizer(ex["text"], truncation=True, max_length=512)
|
74 |
|
@@ -77,72 +67,73 @@ def finetune_small_subset():
|
|
77 |
|
78 |
collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
79 |
|
80 |
-
# 4) TrainingArguments
|
81 |
training_args = TrainingArguments(
|
82 |
output_dir="finetuned_myr1",
|
83 |
num_train_epochs=1,
|
84 |
per_device_train_batch_size=1,
|
85 |
gradient_accumulation_steps=2,
|
86 |
logging_steps=10,
|
87 |
-
save_steps=999999, #
|
88 |
save_total_limit=1,
|
89 |
-
#
|
90 |
-
fp16=fp16,
|
91 |
-
bf16=bf16,
|
92 |
-
# If the above doesn't fix it, remove advanced features that auto uses
|
93 |
-
# gradient scaling, or do more manual approach.
|
94 |
)
|
95 |
|
96 |
-
# 5)
|
97 |
trainer = Trainer(
|
98 |
model=model,
|
99 |
args=training_args,
|
100 |
train_dataset=ds,
|
101 |
-
data_collator=collator
|
102 |
)
|
103 |
|
104 |
# 6) Train
|
105 |
trainer.train()
|
106 |
|
107 |
-
# 7) Save final
|
108 |
trainer.save_model("finetuned_myr1")
|
109 |
tokenizer.save_pretrained("finetuned_myr1")
|
110 |
|
111 |
-
# 8) Reload the newly
|
112 |
finetuned_model = AutoModelForCausalLM.from_pretrained(
|
113 |
"finetuned_myr1",
|
114 |
-
torch_dtype=torch.bfloat16 if bf16 else torch.float32,
|
115 |
device_map="auto",
|
116 |
trust_remote_code=True
|
117 |
)
|
|
|
118 |
global TEXT_PIPELINE
|
119 |
TEXT_PIPELINE = pipeline("text-generation", model=finetuned_model, tokenizer=tokenizer)
|
120 |
return "Finetuning complete! Model reloaded for inference."
|
121 |
|
|
|
122 |
def ensure_pipeline():
|
123 |
"""
|
124 |
-
If
|
125 |
-
|
126 |
"""
|
127 |
global TEXT_PIPELINE
|
128 |
if TEXT_PIPELINE is None:
|
129 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
130 |
-
# We'll do float32 for inference if no BF16 or fp16.
|
131 |
-
model = AutoModelForCausalLM.from_pretrained(
|
132 |
"wuhp/myr1",
|
133 |
subfolder="myr1",
|
134 |
-
torch_dtype=torch.float32,
|
135 |
-
device_map="auto",
|
136 |
trust_remote_code=True
|
137 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
TEXT_PIPELINE = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
139 |
return TEXT_PIPELINE
|
140 |
|
141 |
-
|
|
|
142 |
def predict(prompt, temperature, top_p, min_new_tokens, max_new_tokens):
|
143 |
"""
|
144 |
-
Generates text from the
|
145 |
-
Allows user to adjust temperature, top_p,
|
146 |
"""
|
147 |
pipe = ensure_pipeline()
|
148 |
out = pipe(
|
@@ -155,20 +146,20 @@ def predict(prompt, temperature, top_p, min_new_tokens, max_new_tokens):
|
|
155 |
)
|
156 |
return out[0]["generated_text"]
|
157 |
|
|
|
158 |
# Build Gradio UI
|
159 |
with gr.Blocks() as demo:
|
160 |
-
gr.Markdown("## ZeroGPU Mini-
|
161 |
|
162 |
-
|
163 |
-
finetune_btn = gr.Button("Finetune WikiText-2 (Subset)")
|
164 |
status_box = gr.Textbox(label="Finetune Status")
|
165 |
finetune_btn.click(fn=finetune_small_subset, outputs=status_box)
|
166 |
|
167 |
-
gr.Markdown("
|
168 |
|
169 |
prompt_in = gr.Textbox(lines=3, label="Prompt")
|
170 |
-
temperature = gr.Slider(0.0, 1.5,
|
171 |
-
top_p = gr.Slider(0.0, 1.0,
|
172 |
min_tokens = gr.Slider(260, 5000, value=260, step=10, label="Min New Tokens")
|
173 |
max_tokens = gr.Slider(260, 5000, value=500, step=50, label="Max New Tokens")
|
174 |
|
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
|
|
3 |
from datasets import load_dataset
|
4 |
+
import torch
|
5 |
from transformers import (
|
6 |
AutoConfig,
|
7 |
AutoTokenizer,
|
|
|
13 |
)
|
14 |
|
15 |
##############################################################################
|
16 |
+
# GLOBALS / ZERO-GPU APPROACH
|
|
|
|
|
17 |
##############################################################################
|
18 |
+
# We store a global pipeline after finetuning (if any).
|
19 |
+
TEXT_PIPELINE = None
|
20 |
|
21 |
+
# We'll train on only 50 examples from WikiText-2 to keep it short.
|
22 |
+
NUM_EXAMPLES = 50
|
23 |
|
|
|
|
|
24 |
|
25 |
+
@spaces.GPU(duration=600) # up to 600 seconds (10 minutes) for mini-finetraining
|
26 |
def finetune_small_subset():
|
27 |
"""
|
28 |
+
1) Loads 'wuhp/myr1' in 8-bit,
|
29 |
+
2) Takes 50 examples from WikiText-2,
|
30 |
+
3) Finetunes for 1 epoch,
|
31 |
+
4) Saves to 'finetuned_myr1/',
|
32 |
+
5) Reloads the new model into a pipeline for inference.
|
|
|
33 |
"""
|
34 |
+
|
35 |
# 1) Load dataset
|
36 |
ds = load_dataset("wikitext", "wikitext-2-raw-v1", split="train")
|
37 |
+
# Keep only 50 to fit ephemeral GPU time
|
38 |
ds = ds.select(range(min(NUM_EXAMPLES, len(ds))))
|
39 |
|
40 |
# 2) Load config, tokenizer, model
|
|
|
48 |
subfolder="myr1",
|
49 |
trust_remote_code=True
|
50 |
)
|
51 |
+
# 8-bit loading via bitsandbytes
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
model = AutoModelForCausalLM.from_pretrained(
|
53 |
"wuhp/myr1",
|
54 |
subfolder="myr1",
|
55 |
config=config,
|
56 |
+
load_in_8bit=True, # <--- 8-bit
|
57 |
+
device_map="auto", # let HF manage device placement
|
|
|
|
|
58 |
trust_remote_code=True
|
59 |
)
|
60 |
|
61 |
+
# 3) Tokenize
|
62 |
def tokenize_fn(ex):
|
63 |
return tokenizer(ex["text"], truncation=True, max_length=512)
|
64 |
|
|
|
67 |
|
68 |
collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
69 |
|
70 |
+
# 4) TrainingArguments: no fp16 to avoid half-precision gradient issues
|
71 |
training_args = TrainingArguments(
|
72 |
output_dir="finetuned_myr1",
|
73 |
num_train_epochs=1,
|
74 |
per_device_train_batch_size=1,
|
75 |
gradient_accumulation_steps=2,
|
76 |
logging_steps=10,
|
77 |
+
save_steps=999999, # skip mid-training saves
|
78 |
save_total_limit=1,
|
79 |
+
fp16=False, # <--- disable FP16
|
|
|
|
|
|
|
|
|
80 |
)
|
81 |
|
82 |
+
# 5) Trainer
|
83 |
trainer = Trainer(
|
84 |
model=model,
|
85 |
args=training_args,
|
86 |
train_dataset=ds,
|
87 |
+
data_collator=collator,
|
88 |
)
|
89 |
|
90 |
# 6) Train
|
91 |
trainer.train()
|
92 |
|
93 |
+
# 7) Save final model
|
94 |
trainer.save_model("finetuned_myr1")
|
95 |
tokenizer.save_pretrained("finetuned_myr1")
|
96 |
|
97 |
+
# 8) Reload the newly finetuned model as a pipeline (for inference)
|
98 |
finetuned_model = AutoModelForCausalLM.from_pretrained(
|
99 |
"finetuned_myr1",
|
|
|
100 |
device_map="auto",
|
101 |
trust_remote_code=True
|
102 |
)
|
103 |
+
|
104 |
global TEXT_PIPELINE
|
105 |
TEXT_PIPELINE = pipeline("text-generation", model=finetuned_model, tokenizer=tokenizer)
|
106 |
return "Finetuning complete! Model reloaded for inference."
|
107 |
|
108 |
+
|
109 |
def ensure_pipeline():
|
110 |
"""
|
111 |
+
If no pipeline yet, load the original model from wuhp/myr1 for inference.
|
112 |
+
(In 8-bit or normal float? We can do normal float here for a simpler approach.)
|
113 |
"""
|
114 |
global TEXT_PIPELINE
|
115 |
if TEXT_PIPELINE is None:
|
116 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
|
|
|
|
117 |
"wuhp/myr1",
|
118 |
subfolder="myr1",
|
|
|
|
|
119 |
trust_remote_code=True
|
120 |
)
|
121 |
+
model = AutoModelForCausalLM.from_pretrained(
|
122 |
+
"wuhp/myr1",
|
123 |
+
subfolder="myr1",
|
124 |
+
trust_remote_code=True,
|
125 |
+
load_in_8bit=True, # load in 8-bit also for inference
|
126 |
+
device_map="auto"
|
127 |
+
)
|
128 |
TEXT_PIPELINE = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
129 |
return TEXT_PIPELINE
|
130 |
|
131 |
+
|
132 |
+
@spaces.GPU(duration=120) # up to 120s for text generation
|
133 |
def predict(prompt, temperature, top_p, min_new_tokens, max_new_tokens):
|
134 |
"""
|
135 |
+
Generates text from either the finetuned pipeline (if it exists) or the base model.
|
136 |
+
Allows user to adjust temperature, top_p, min/max tokens.
|
137 |
"""
|
138 |
pipe = ensure_pipeline()
|
139 |
out = pipe(
|
|
|
146 |
)
|
147 |
return out[0]["generated_text"]
|
148 |
|
149 |
+
|
150 |
# Build Gradio UI
|
151 |
with gr.Blocks() as demo:
|
152 |
+
gr.Markdown("## ZeroGPU: Mini-Finetune with 8-bit + Extended Generation")
|
153 |
|
154 |
+
finetune_btn = gr.Button("Finetune on 50 lines of WikiText-2 (up to 10 min)")
|
|
|
155 |
status_box = gr.Textbox(label="Finetune Status")
|
156 |
finetune_btn.click(fn=finetune_small_subset, outputs=status_box)
|
157 |
|
158 |
+
gr.Markdown("After finetuning, or even without it, generate text below:")
|
159 |
|
160 |
prompt_in = gr.Textbox(lines=3, label="Prompt")
|
161 |
+
temperature = gr.Slider(0.0, 1.5, step=0.1, value=0.7, label="Temperature")
|
162 |
+
top_p = gr.Slider(0.0, 1.0, step=0.05, value=0.9, label="Top-p")
|
163 |
min_tokens = gr.Slider(260, 5000, value=260, step=10, label="Min New Tokens")
|
164 |
max_tokens = gr.Slider(260, 5000, value=500, step=50, label="Max New Tokens")
|
165 |
|