Spaces:
Runtime error
Runtime error
import cv2 | |
import numpy as np | |
import torch | |
from torch.nn import functional as F | |
""" | |
Taken from https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html | |
Just to avoid installing pytorch3d at times | |
""" | |
def standardize_quaternion(quaternions: torch.Tensor) -> torch.Tensor: | |
""" | |
Convert a unit quaternion to a standard form: one in which the real | |
part is non negative. | |
Args: | |
quaternions: Quaternions with real part first, | |
as tensor of shape (..., 4). | |
Returns: | |
Standardized quaternions as tensor of shape (..., 4). | |
""" | |
return torch.where(quaternions[..., 0:1] < 0, -quaternions, quaternions) | |
def quaternion_multiply(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: | |
""" | |
Multiply two quaternions representing rotations, returning the quaternion | |
representing their composition, i.e. the versor with nonnegative real part. | |
Usual torch rules for broadcasting apply. | |
Args: | |
a: Quaternions as tensor of shape (..., 4), real part first. | |
b: Quaternions as tensor of shape (..., 4), real part first. | |
Returns: | |
The product of a and b, a tensor of quaternions of shape (..., 4). | |
""" | |
ab = quaternion_raw_multiply(a, b) | |
return standardize_quaternion(ab) | |
def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor: | |
""" | |
Returns torch.sqrt(torch.max(0, x)) | |
but with a zero subgradient where x is 0. | |
""" | |
ret = torch.zeros_like(x) | |
positive_mask = x > 0 | |
ret[positive_mask] = torch.sqrt(x[positive_mask]) | |
return ret | |
def quaternion_to_axis_angle(quaternions: torch.Tensor) -> torch.Tensor: | |
""" | |
Convert rotations given as quaternions to axis/angle. | |
Args: | |
quaternions: quaternions with real part first, | |
as tensor of shape (..., 4). | |
Returns: | |
Rotations given as a vector in axis angle form, as a tensor | |
of shape (..., 3), where the magnitude is the angle | |
turned anticlockwise in radians around the vector's | |
direction. | |
""" | |
norms = torch.norm(quaternions[..., 1:], p=2, dim=-1, keepdim=True) | |
half_angles = torch.atan2(norms, quaternions[..., :1]) | |
angles = 2 * half_angles | |
eps = 1e-6 | |
small_angles = angles.abs() < eps | |
sin_half_angles_over_angles = torch.empty_like(angles) | |
sin_half_angles_over_angles[~small_angles] = ( | |
torch.sin(half_angles[~small_angles]) / angles[~small_angles] | |
) | |
# for x small, sin(x/2) is about x/2 - (x/2)^3/6 | |
# so sin(x/2)/x is about 1/2 - (x*x)/48 | |
sin_half_angles_over_angles[small_angles] = ( | |
0.5 - (angles[small_angles] * angles[small_angles]) / 48 | |
) | |
return quaternions[..., 1:] / sin_half_angles_over_angles | |
def quaternion_to_matrix(quaternions: torch.Tensor) -> torch.Tensor: | |
""" | |
Convert rotations given as quaternions to rotation matrices. | |
Args: | |
quaternions: quaternions with real part first, | |
as tensor of shape (..., 4). | |
Returns: | |
Rotation matrices as tensor of shape (..., 3, 3). | |
""" | |
r, i, j, k = torch.unbind(quaternions, -1) | |
# pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`. | |
two_s = 2.0 / (quaternions * quaternions).sum(-1) | |
o = torch.stack( | |
( | |
1 - two_s * (j * j + k * k), | |
two_s * (i * j - k * r), | |
two_s * (i * k + j * r), | |
two_s * (i * j + k * r), | |
1 - two_s * (i * i + k * k), | |
two_s * (j * k - i * r), | |
two_s * (i * k - j * r), | |
two_s * (j * k + i * r), | |
1 - two_s * (i * i + j * j), | |
), | |
-1, | |
) | |
return o.reshape(quaternions.shape[:-1] + (3, 3)) | |
def matrix_to_quaternion(matrix: torch.Tensor) -> torch.Tensor: | |
""" | |
Convert rotations given as rotation matrices to quaternions. | |
Args: | |
matrix: Rotation matrices as tensor of shape (..., 3, 3). | |
Returns: | |
quaternions with real part first, as tensor of shape (..., 4). | |
""" | |
if matrix.size(-1) != 3 or matrix.size(-2) != 3: | |
raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.") | |
batch_dim = matrix.shape[:-2] | |
m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind( | |
matrix.reshape(batch_dim + (9,)), dim=-1 | |
) | |
q_abs = _sqrt_positive_part( | |
torch.stack( | |
[ | |
1.0 + m00 + m11 + m22, | |
1.0 + m00 - m11 - m22, | |
1.0 - m00 + m11 - m22, | |
1.0 - m00 - m11 + m22, | |
], | |
dim=-1, | |
) | |
) | |
# we produce the desired quaternion multiplied by each of r, i, j, k | |
quat_by_rijk = torch.stack( | |
[ | |
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and | |
# `int`. | |
torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1), | |
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and | |
# `int`. | |
torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1), | |
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and | |
# `int`. | |
torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1), | |
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and | |
# `int`. | |
torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1), | |
], | |
dim=-2, | |
) | |
# We floor here at 0.1 but the exact level is not important; if q_abs is small, | |
# the candidate won't be picked. | |
flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device) | |
quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr)) | |
# if not for numerical problems, quat_candidates[i] should be same (up to a sign), | |
# forall i; we pick the best-conditioned one (with the largest denominator) | |
return quat_candidates[ | |
F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, : | |
].reshape(batch_dim + (4,)) | |
def matrix_to_axis_angle(matrix: torch.Tensor) -> torch.Tensor: | |
""" | |
Convert rotations given as rotation matrices to axis/angle. | |
Args: | |
matrix: Rotation matrices as tensor of shape (..., 3, 3). | |
Returns: | |
Rotations given as a vector in axis angle form, as a tensor | |
of shape (..., 3), where the magnitude is the angle | |
turned anticlockwise in radians around the vector's | |
direction. | |
""" | |
return quaternion_to_axis_angle(matrix_to_quaternion(matrix)) | |
def rot_aa(aa, rot): | |
"""Rotate axis angle parameters.""" | |
# pose parameters | |
R = np.array( | |
[ | |
[np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0], | |
[np.sin(np.deg2rad(-rot)), np.cos(np.deg2rad(-rot)), 0], | |
[0, 0, 1], | |
] | |
) | |
# find the rotation of the body in camera frame | |
per_rdg, _ = cv2.Rodrigues(aa) | |
# apply the global rotation to the global orientation | |
resrot, _ = cv2.Rodrigues(np.dot(R, per_rdg)) | |
aa = (resrot.T)[0] | |
return aa | |
def quat2mat(quat): | |
""" | |
This function is borrowed from https://github.com/MandyMo/pytorch_HMR/blob/master/src/util.py#L50 | |
Convert quaternion coefficients to rotation matrix. | |
Args: | |
quat: size = [batch_size, 4] 4 <===>(w, x, y, z) | |
Returns: | |
Rotation matrix corresponding to the quaternion -- size = [batch_size, 3, 3] | |
""" | |
norm_quat = quat | |
norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True) | |
w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:, 2], norm_quat[:, 3] | |
batch_size = quat.size(0) | |
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2) | |
wx, wy, wz = w * x, w * y, w * z | |
xy, xz, yz = x * y, x * z, y * z | |
rotMat = torch.stack( | |
[ | |
w2 + x2 - y2 - z2, | |
2 * xy - 2 * wz, | |
2 * wy + 2 * xz, | |
2 * wz + 2 * xy, | |
w2 - x2 + y2 - z2, | |
2 * yz - 2 * wx, | |
2 * xz - 2 * wy, | |
2 * wx + 2 * yz, | |
w2 - x2 - y2 + z2, | |
], | |
dim=1, | |
).view(batch_size, 3, 3) | |
return rotMat | |
def batch_aa2rot(axisang): | |
# This function is borrowed from https://github.com/MandyMo/pytorch_HMR/blob/master/src/util.py#L37 | |
assert len(axisang.shape) == 2 | |
assert axisang.shape[1] == 3 | |
# axisang N x 3 | |
axisang_norm = torch.norm(axisang + 1e-8, p=2, dim=1) | |
angle = torch.unsqueeze(axisang_norm, -1) | |
axisang_normalized = torch.div(axisang, angle) | |
angle = angle * 0.5 | |
v_cos = torch.cos(angle) | |
v_sin = torch.sin(angle) | |
quat = torch.cat([v_cos, v_sin * axisang_normalized], dim=1) | |
rot_mat = quat2mat(quat) | |
rot_mat = rot_mat.view(rot_mat.shape[0], 9) | |
return rot_mat | |
def batch_rot2aa(Rs): | |
assert len(Rs.shape) == 3 | |
assert Rs.shape[1] == Rs.shape[2] | |
assert Rs.shape[1] == 3 | |
""" | |
Rs is B x 3 x 3 | |
void cMathUtil::RotMatToAxisAngle(const tMatrix& mat, tVector& out_axis, | |
double& out_theta) | |
{ | |
double c = 0.5 * (mat(0, 0) + mat(1, 1) + mat(2, 2) - 1); | |
c = cMathUtil::Clamp(c, -1.0, 1.0); | |
out_theta = std::acos(c); | |
if (std::abs(out_theta) < 0.00001) | |
{ | |
out_axis = tVector(0, 0, 1, 0); | |
} | |
else | |
{ | |
double m21 = mat(2, 1) - mat(1, 2); | |
double m02 = mat(0, 2) - mat(2, 0); | |
double m10 = mat(1, 0) - mat(0, 1); | |
double denom = std::sqrt(m21 * m21 + m02 * m02 + m10 * m10); | |
out_axis[0] = m21 / denom; | |
out_axis[1] = m02 / denom; | |
out_axis[2] = m10 / denom; | |
out_axis[3] = 0; | |
} | |
} | |
""" | |
cos = 0.5 * (torch.stack([torch.trace(x) for x in Rs]) - 1) | |
cos = torch.clamp(cos, -1, 1) | |
theta = torch.acos(cos) | |
m21 = Rs[:, 2, 1] - Rs[:, 1, 2] | |
m02 = Rs[:, 0, 2] - Rs[:, 2, 0] | |
m10 = Rs[:, 1, 0] - Rs[:, 0, 1] | |
denom = torch.sqrt(m21 * m21 + m02 * m02 + m10 * m10) | |
axis0 = torch.where(torch.abs(theta) < 0.00001, m21, m21 / denom) | |
axis1 = torch.where(torch.abs(theta) < 0.00001, m02, m02 / denom) | |
axis2 = torch.where(torch.abs(theta) < 0.00001, m10, m10 / denom) | |
return theta.unsqueeze(1) * torch.stack([axis0, axis1, axis2], 1) | |
def batch_rodrigues(theta): | |
"""Convert axis-angle representation to rotation matrix. | |
Args: | |
theta: size = [B, 3] | |
Returns: | |
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3] | |
""" | |
l1norm = torch.norm(theta + 1e-8, p=2, dim=1) | |
angle = torch.unsqueeze(l1norm, -1) | |
normalized = torch.div(theta, angle) | |
angle = angle * 0.5 | |
v_cos = torch.cos(angle) | |
v_sin = torch.sin(angle) | |
quat = torch.cat([v_cos, v_sin * normalized], dim=1) | |
return quat_to_rotmat(quat) | |
def quat_to_rotmat(quat): | |
"""Convert quaternion coefficients to rotation matrix. | |
Args: | |
quat: size = [B, 4] 4 <===>(w, x, y, z) | |
Returns: | |
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3] | |
""" | |
norm_quat = quat | |
norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True) | |
w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:, 2], norm_quat[:, 3] | |
B = quat.size(0) | |
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2) | |
wx, wy, wz = w * x, w * y, w * z | |
xy, xz, yz = x * y, x * z, y * z | |
rotMat = torch.stack( | |
[ | |
w2 + x2 - y2 - z2, | |
2 * xy - 2 * wz, | |
2 * wy + 2 * xz, | |
2 * wz + 2 * xy, | |
w2 - x2 + y2 - z2, | |
2 * yz - 2 * wx, | |
2 * xz - 2 * wy, | |
2 * wx + 2 * yz, | |
w2 - x2 - y2 + z2, | |
], | |
dim=1, | |
).view(B, 3, 3) | |
return rotMat | |
def rot6d_to_rotmat(x): | |
"""Convert 6D rotation representation to 3x3 rotation matrix. | |
Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019 | |
Input: | |
(B,6) Batch of 6-D rotation representations | |
Output: | |
(B,3,3) Batch of corresponding rotation matrices | |
""" | |
x = x.reshape(-1, 3, 2) | |
a1 = x[:, :, 0] | |
a2 = x[:, :, 1] | |
b1 = F.normalize(a1) | |
b2 = F.normalize(a2 - torch.einsum("bi,bi->b", b1, a2).unsqueeze(-1) * b1) | |
b3 = torch.cross(b1, b2) | |
return torch.stack((b1, b2, b3), dim=-1) | |
def rotmat_to_rot6d(x): | |
rotmat = x.reshape(-1, 3, 3) | |
rot6d = rotmat[:, :, :2].reshape(x.shape[0], -1) | |
return rot6d | |
def rotation_matrix_to_angle_axis(rotation_matrix): | |
""" | |
This function is borrowed from https://github.com/kornia/kornia | |
Convert 3x4 rotation matrix to Rodrigues vector | |
Args: | |
rotation_matrix (Tensor): rotation matrix. | |
Returns: | |
Tensor: Rodrigues vector transformation. | |
Shape: | |
- Input: :math:`(N, 3, 4)` | |
- Output: :math:`(N, 3)` | |
Example: | |
>>> input = torch.rand(2, 3, 4) # Nx4x4 | |
>>> output = tgm.rotation_matrix_to_angle_axis(input) # Nx3 | |
""" | |
if rotation_matrix.shape[1:] == (3, 3): | |
rot_mat = rotation_matrix.reshape(-1, 3, 3) | |
hom = ( | |
torch.tensor([0, 0, 1], dtype=torch.float32, device=rotation_matrix.device) | |
.reshape(1, 3, 1) | |
.expand(rot_mat.shape[0], -1, -1) | |
) | |
rotation_matrix = torch.cat([rot_mat, hom], dim=-1) | |
quaternion = rotation_matrix_to_quaternion(rotation_matrix) | |
aa = quaternion_to_angle_axis(quaternion) | |
aa[torch.isnan(aa)] = 0.0 | |
return aa | |
def quaternion_to_angle_axis(quaternion: torch.Tensor) -> torch.Tensor: | |
""" | |
This function is borrowed from https://github.com/kornia/kornia | |
Convert quaternion vector to angle axis of rotation. | |
Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h | |
Args: | |
quaternion (torch.Tensor): tensor with quaternions. | |
Return: | |
torch.Tensor: tensor with angle axis of rotation. | |
Shape: | |
- Input: :math:`(*, 4)` where `*` means, any number of dimensions | |
- Output: :math:`(*, 3)` | |
Example: | |
>>> quaternion = torch.rand(2, 4) # Nx4 | |
>>> angle_axis = tgm.quaternion_to_angle_axis(quaternion) # Nx3 | |
""" | |
if not torch.is_tensor(quaternion): | |
raise TypeError( | |
"Input type is not a torch.Tensor. Got {}".format(type(quaternion)) | |
) | |
if not quaternion.shape[-1] == 4: | |
raise ValueError( | |
"Input must be a tensor of shape Nx4 or 4. Got {}".format(quaternion.shape) | |
) | |
# unpack input and compute conversion | |
q1: torch.Tensor = quaternion[..., 1] | |
q2: torch.Tensor = quaternion[..., 2] | |
q3: torch.Tensor = quaternion[..., 3] | |
sin_squared_theta: torch.Tensor = q1 * q1 + q2 * q2 + q3 * q3 | |
sin_theta: torch.Tensor = torch.sqrt(sin_squared_theta) | |
cos_theta: torch.Tensor = quaternion[..., 0] | |
two_theta: torch.Tensor = 2.0 * torch.where( | |
cos_theta < 0.0, | |
torch.atan2(-sin_theta, -cos_theta), | |
torch.atan2(sin_theta, cos_theta), | |
) | |
k_pos: torch.Tensor = two_theta / sin_theta | |
k_neg: torch.Tensor = 2.0 * torch.ones_like(sin_theta) | |
k: torch.Tensor = torch.where(sin_squared_theta > 0.0, k_pos, k_neg) | |
angle_axis: torch.Tensor = torch.zeros_like(quaternion)[..., :3] | |
angle_axis[..., 0] += q1 * k | |
angle_axis[..., 1] += q2 * k | |
angle_axis[..., 2] += q3 * k | |
return angle_axis | |
def rotation_matrix_to_quaternion(rotation_matrix, eps=1e-6): | |
""" | |
This function is borrowed from https://github.com/kornia/kornia | |
Convert 3x4 rotation matrix to 4d quaternion vector | |
This algorithm is based on algorithm described in | |
https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L201 | |
Args: | |
rotation_matrix (Tensor): the rotation matrix to convert. | |
Return: | |
Tensor: the rotation in quaternion | |
Shape: | |
- Input: :math:`(N, 3, 4)` | |
- Output: :math:`(N, 4)` | |
Example: | |
>>> input = torch.rand(4, 3, 4) # Nx3x4 | |
>>> output = tgm.rotation_matrix_to_quaternion(input) # Nx4 | |
""" | |
if not torch.is_tensor(rotation_matrix): | |
raise TypeError( | |
"Input type is not a torch.Tensor. Got {}".format(type(rotation_matrix)) | |
) | |
if len(rotation_matrix.shape) > 3: | |
raise ValueError( | |
"Input size must be a three dimensional tensor. Got {}".format( | |
rotation_matrix.shape | |
) | |
) | |
if not rotation_matrix.shape[-2:] == (3, 4): | |
raise ValueError( | |
"Input size must be a N x 3 x 4 tensor. Got {}".format( | |
rotation_matrix.shape | |
) | |
) | |
rmat_t = torch.transpose(rotation_matrix, 1, 2) | |
mask_d2 = rmat_t[:, 2, 2] < eps | |
mask_d0_d1 = rmat_t[:, 0, 0] > rmat_t[:, 1, 1] | |
mask_d0_nd1 = rmat_t[:, 0, 0] < -rmat_t[:, 1, 1] | |
t0 = 1 + rmat_t[:, 0, 0] - rmat_t[:, 1, 1] - rmat_t[:, 2, 2] | |
q0 = torch.stack( | |
[ | |
rmat_t[:, 1, 2] - rmat_t[:, 2, 1], | |
t0, | |
rmat_t[:, 0, 1] + rmat_t[:, 1, 0], | |
rmat_t[:, 2, 0] + rmat_t[:, 0, 2], | |
], | |
-1, | |
) | |
t0_rep = t0.repeat(4, 1).t() | |
t1 = 1 - rmat_t[:, 0, 0] + rmat_t[:, 1, 1] - rmat_t[:, 2, 2] | |
q1 = torch.stack( | |
[ | |
rmat_t[:, 2, 0] - rmat_t[:, 0, 2], | |
rmat_t[:, 0, 1] + rmat_t[:, 1, 0], | |
t1, | |
rmat_t[:, 1, 2] + rmat_t[:, 2, 1], | |
], | |
-1, | |
) | |
t1_rep = t1.repeat(4, 1).t() | |
t2 = 1 - rmat_t[:, 0, 0] - rmat_t[:, 1, 1] + rmat_t[:, 2, 2] | |
q2 = torch.stack( | |
[ | |
rmat_t[:, 0, 1] - rmat_t[:, 1, 0], | |
rmat_t[:, 2, 0] + rmat_t[:, 0, 2], | |
rmat_t[:, 1, 2] + rmat_t[:, 2, 1], | |
t2, | |
], | |
-1, | |
) | |
t2_rep = t2.repeat(4, 1).t() | |
t3 = 1 + rmat_t[:, 0, 0] + rmat_t[:, 1, 1] + rmat_t[:, 2, 2] | |
q3 = torch.stack( | |
[ | |
t3, | |
rmat_t[:, 1, 2] - rmat_t[:, 2, 1], | |
rmat_t[:, 2, 0] - rmat_t[:, 0, 2], | |
rmat_t[:, 0, 1] - rmat_t[:, 1, 0], | |
], | |
-1, | |
) | |
t3_rep = t3.repeat(4, 1).t() | |
mask_c0 = mask_d2 * mask_d0_d1 | |
mask_c1 = mask_d2 * ~mask_d0_d1 | |
mask_c2 = ~mask_d2 * mask_d0_nd1 | |
mask_c3 = ~mask_d2 * ~mask_d0_nd1 | |
mask_c0 = mask_c0.view(-1, 1).type_as(q0) | |
mask_c1 = mask_c1.view(-1, 1).type_as(q1) | |
mask_c2 = mask_c2.view(-1, 1).type_as(q2) | |
mask_c3 = mask_c3.view(-1, 1).type_as(q3) | |
q = q0 * mask_c0 + q1 * mask_c1 + q2 * mask_c2 + q3 * mask_c3 | |
q /= torch.sqrt( | |
t0_rep * mask_c0 | |
+ t1_rep * mask_c1 | |
+ t2_rep * mask_c2 # noqa | |
+ t3_rep * mask_c3 | |
) # noqa | |
q *= 0.5 | |
return q | |
def batch_euler2matrix(r): | |
return quaternion_to_rotation_matrix(euler_to_quaternion(r)) | |
def euler_to_quaternion(r): | |
x = r[..., 0] | |
y = r[..., 1] | |
z = r[..., 2] | |
z = z / 2.0 | |
y = y / 2.0 | |
x = x / 2.0 | |
cz = torch.cos(z) | |
sz = torch.sin(z) | |
cy = torch.cos(y) | |
sy = torch.sin(y) | |
cx = torch.cos(x) | |
sx = torch.sin(x) | |
quaternion = torch.zeros_like(r.repeat(1, 2))[..., :4].to(r.device) | |
quaternion[..., 0] += cx * cy * cz - sx * sy * sz | |
quaternion[..., 1] += cx * sy * sz + cy * cz * sx | |
quaternion[..., 2] += cx * cz * sy - sx * cy * sz | |
quaternion[..., 3] += cx * cy * sz + sx * cz * sy | |
return quaternion | |
def quaternion_to_rotation_matrix(quat): | |
"""Convert quaternion coefficients to rotation matrix. | |
Args: | |
quat: size = [B, 4] 4 <===>(w, x, y, z) | |
Returns: | |
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3] | |
""" | |
norm_quat = quat | |
norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True) | |
w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:, 2], norm_quat[:, 3] | |
B = quat.size(0) | |
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2) | |
wx, wy, wz = w * x, w * y, w * z | |
xy, xz, yz = x * y, x * z, y * z | |
rotMat = torch.stack( | |
[ | |
w2 + x2 - y2 - z2, | |
2 * xy - 2 * wz, | |
2 * wy + 2 * xz, | |
2 * wz + 2 * xy, | |
w2 - x2 + y2 - z2, | |
2 * yz - 2 * wx, | |
2 * xz - 2 * wy, | |
2 * wx + 2 * yz, | |
w2 - x2 - y2 + z2, | |
], | |
dim=1, | |
).view(B, 3, 3) | |
return rotMat | |
def euler_angles_from_rotmat(R): | |
""" | |
computer euler angles for rotation around x, y, z axis | |
from rotation amtrix | |
R: 4x4 rotation matrix | |
https://www.gregslabaugh.net/publications/euler.pdf | |
""" | |
r21 = np.round(R[:, 2, 0].item(), 4) | |
if abs(r21) != 1: | |
y_angle1 = -1 * torch.asin(R[:, 2, 0]) | |
y_angle2 = math.pi + torch.asin(R[:, 2, 0]) | |
cy1, cy2 = torch.cos(y_angle1), torch.cos(y_angle2) | |
x_angle1 = torch.atan2(R[:, 2, 1] / cy1, R[:, 2, 2] / cy1) | |
x_angle2 = torch.atan2(R[:, 2, 1] / cy2, R[:, 2, 2] / cy2) | |
z_angle1 = torch.atan2(R[:, 1, 0] / cy1, R[:, 0, 0] / cy1) | |
z_angle2 = torch.atan2(R[:, 1, 0] / cy2, R[:, 0, 0] / cy2) | |
s1 = (x_angle1, y_angle1, z_angle1) | |
s2 = (x_angle2, y_angle2, z_angle2) | |
s = (s1, s2) | |
else: | |
z_angle = torch.tensor([0], device=R.device).float() | |
if r21 == -1: | |
y_angle = torch.tensor([math.pi / 2], device=R.device).float() | |
x_angle = z_angle + torch.atan2(R[:, 0, 1], R[:, 0, 2]) | |
else: | |
y_angle = -torch.tensor([math.pi / 2], device=R.device).float() | |
x_angle = -z_angle + torch.atan2(-R[:, 0, 1], R[:, 0, 2]) | |
s = ((x_angle, y_angle, z_angle),) | |
return s | |
def quaternion_raw_multiply(a, b): | |
""" | |
Source: https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/transforms/rotation_conversions.py | |
Multiply two quaternions. | |
Usual torch rules for broadcasting apply. | |
Args: | |
a: Quaternions as tensor of shape (..., 4), real part first. | |
b: Quaternions as tensor of shape (..., 4), real part first. | |
Returns: | |
The product of a and b, a tensor of quaternions shape (..., 4). | |
""" | |
aw, ax, ay, az = torch.unbind(a, -1) | |
bw, bx, by, bz = torch.unbind(b, -1) | |
ow = aw * bw - ax * bx - ay * by - az * bz | |
ox = aw * bx + ax * bw + ay * bz - az * by | |
oy = aw * by - ax * bz + ay * bw + az * bx | |
oz = aw * bz + ax * by - ay * bx + az * bw | |
return torch.stack((ow, ox, oy, oz), -1) | |
def quaternion_invert(quaternion): | |
""" | |
Source: https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/transforms/rotation_conversions.py | |
Given a quaternion representing rotation, get the quaternion representing | |
its inverse. | |
Args: | |
quaternion: Quaternions as tensor of shape (..., 4), with real part | |
first, which must be versors (unit quaternions). | |
Returns: | |
The inverse, a tensor of quaternions of shape (..., 4). | |
""" | |
return quaternion * quaternion.new_tensor([1, -1, -1, -1]) | |
def quaternion_apply(quaternion, point): | |
""" | |
Source: https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/transforms/rotation_conversions.py | |
Apply the rotation given by a quaternion to a 3D point. | |
Usual torch rules for broadcasting apply. | |
Args: | |
quaternion: Tensor of quaternions, real part first, of shape (..., 4). | |
point: Tensor of 3D points of shape (..., 3). | |
Returns: | |
Tensor of rotated points of shape (..., 3). | |
""" | |
if point.size(-1) != 3: | |
raise ValueError(f"Points are not in 3D, f{point.shape}.") | |
real_parts = point.new_zeros(point.shape[:-1] + (1,)) | |
point_as_quaternion = torch.cat((real_parts, point), -1) | |
out = quaternion_raw_multiply( | |
quaternion_raw_multiply(quaternion, point_as_quaternion), | |
quaternion_invert(quaternion), | |
) | |
return out[..., 1:] | |
def axis_angle_to_quaternion(axis_angle: torch.Tensor) -> torch.Tensor: | |
""" | |
Source: https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/transforms/rotation_conversions.py | |
Convert rotations given as axis/angle to quaternions. | |
Args: | |
axis_angle: Rotations given as a vector in axis angle form, | |
as a tensor of shape (..., 3), where the magnitude is | |
the angle turned anticlockwise in radians around the | |
vector's direction. | |
Returns: | |
quaternions with real part first, as tensor of shape (..., 4). | |
""" | |
angles = torch.norm(axis_angle, p=2, dim=-1, keepdim=True) | |
half_angles = angles * 0.5 | |
eps = 1e-6 | |
small_angles = angles.abs() < eps | |
sin_half_angles_over_angles = torch.empty_like(angles) | |
sin_half_angles_over_angles[~small_angles] = ( | |
torch.sin(half_angles[~small_angles]) / angles[~small_angles] | |
) | |
# for x small, sin(x/2) is about x/2 - (x/2)^3/6 | |
# so sin(x/2)/x is about 1/2 - (x*x)/48 | |
sin_half_angles_over_angles[small_angles] = ( | |
0.5 - (angles[small_angles] * angles[small_angles]) / 48 | |
) | |
quaternions = torch.cat( | |
[torch.cos(half_angles), axis_angle * sin_half_angles_over_angles], dim=-1 | |
) | |
return quaternions | |