meow
init
d6d3a5b
raw
history blame
25.1 kB
import cv2
import numpy as np
import torch
from torch.nn import functional as F
"""
Taken from https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html
Just to avoid installing pytorch3d at times
"""
def standardize_quaternion(quaternions: torch.Tensor) -> torch.Tensor:
"""
Convert a unit quaternion to a standard form: one in which the real
part is non negative.
Args:
quaternions: Quaternions with real part first,
as tensor of shape (..., 4).
Returns:
Standardized quaternions as tensor of shape (..., 4).
"""
return torch.where(quaternions[..., 0:1] < 0, -quaternions, quaternions)
def quaternion_multiply(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
"""
Multiply two quaternions representing rotations, returning the quaternion
representing their composition, i.e. the versor with nonnegative real part.
Usual torch rules for broadcasting apply.
Args:
a: Quaternions as tensor of shape (..., 4), real part first.
b: Quaternions as tensor of shape (..., 4), real part first.
Returns:
The product of a and b, a tensor of quaternions of shape (..., 4).
"""
ab = quaternion_raw_multiply(a, b)
return standardize_quaternion(ab)
def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor:
"""
Returns torch.sqrt(torch.max(0, x))
but with a zero subgradient where x is 0.
"""
ret = torch.zeros_like(x)
positive_mask = x > 0
ret[positive_mask] = torch.sqrt(x[positive_mask])
return ret
def quaternion_to_axis_angle(quaternions: torch.Tensor) -> torch.Tensor:
"""
Convert rotations given as quaternions to axis/angle.
Args:
quaternions: quaternions with real part first,
as tensor of shape (..., 4).
Returns:
Rotations given as a vector in axis angle form, as a tensor
of shape (..., 3), where the magnitude is the angle
turned anticlockwise in radians around the vector's
direction.
"""
norms = torch.norm(quaternions[..., 1:], p=2, dim=-1, keepdim=True)
half_angles = torch.atan2(norms, quaternions[..., :1])
angles = 2 * half_angles
eps = 1e-6
small_angles = angles.abs() < eps
sin_half_angles_over_angles = torch.empty_like(angles)
sin_half_angles_over_angles[~small_angles] = (
torch.sin(half_angles[~small_angles]) / angles[~small_angles]
)
# for x small, sin(x/2) is about x/2 - (x/2)^3/6
# so sin(x/2)/x is about 1/2 - (x*x)/48
sin_half_angles_over_angles[small_angles] = (
0.5 - (angles[small_angles] * angles[small_angles]) / 48
)
return quaternions[..., 1:] / sin_half_angles_over_angles
def quaternion_to_matrix(quaternions: torch.Tensor) -> torch.Tensor:
"""
Convert rotations given as quaternions to rotation matrices.
Args:
quaternions: quaternions with real part first,
as tensor of shape (..., 4).
Returns:
Rotation matrices as tensor of shape (..., 3, 3).
"""
r, i, j, k = torch.unbind(quaternions, -1)
# pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`.
two_s = 2.0 / (quaternions * quaternions).sum(-1)
o = torch.stack(
(
1 - two_s * (j * j + k * k),
two_s * (i * j - k * r),
two_s * (i * k + j * r),
two_s * (i * j + k * r),
1 - two_s * (i * i + k * k),
two_s * (j * k - i * r),
two_s * (i * k - j * r),
two_s * (j * k + i * r),
1 - two_s * (i * i + j * j),
),
-1,
)
return o.reshape(quaternions.shape[:-1] + (3, 3))
def matrix_to_quaternion(matrix: torch.Tensor) -> torch.Tensor:
"""
Convert rotations given as rotation matrices to quaternions.
Args:
matrix: Rotation matrices as tensor of shape (..., 3, 3).
Returns:
quaternions with real part first, as tensor of shape (..., 4).
"""
if matrix.size(-1) != 3 or matrix.size(-2) != 3:
raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.")
batch_dim = matrix.shape[:-2]
m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind(
matrix.reshape(batch_dim + (9,)), dim=-1
)
q_abs = _sqrt_positive_part(
torch.stack(
[
1.0 + m00 + m11 + m22,
1.0 + m00 - m11 - m22,
1.0 - m00 + m11 - m22,
1.0 - m00 - m11 + m22,
],
dim=-1,
)
)
# we produce the desired quaternion multiplied by each of r, i, j, k
quat_by_rijk = torch.stack(
[
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1),
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1),
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1),
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1),
],
dim=-2,
)
# We floor here at 0.1 but the exact level is not important; if q_abs is small,
# the candidate won't be picked.
flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device)
quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr))
# if not for numerical problems, quat_candidates[i] should be same (up to a sign),
# forall i; we pick the best-conditioned one (with the largest denominator)
return quat_candidates[
F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, :
].reshape(batch_dim + (4,))
def matrix_to_axis_angle(matrix: torch.Tensor) -> torch.Tensor:
"""
Convert rotations given as rotation matrices to axis/angle.
Args:
matrix: Rotation matrices as tensor of shape (..., 3, 3).
Returns:
Rotations given as a vector in axis angle form, as a tensor
of shape (..., 3), where the magnitude is the angle
turned anticlockwise in radians around the vector's
direction.
"""
return quaternion_to_axis_angle(matrix_to_quaternion(matrix))
def rot_aa(aa, rot):
"""Rotate axis angle parameters."""
# pose parameters
R = np.array(
[
[np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0],
[np.sin(np.deg2rad(-rot)), np.cos(np.deg2rad(-rot)), 0],
[0, 0, 1],
]
)
# find the rotation of the body in camera frame
per_rdg, _ = cv2.Rodrigues(aa)
# apply the global rotation to the global orientation
resrot, _ = cv2.Rodrigues(np.dot(R, per_rdg))
aa = (resrot.T)[0]
return aa
def quat2mat(quat):
"""
This function is borrowed from https://github.com/MandyMo/pytorch_HMR/blob/master/src/util.py#L50
Convert quaternion coefficients to rotation matrix.
Args:
quat: size = [batch_size, 4] 4 <===>(w, x, y, z)
Returns:
Rotation matrix corresponding to the quaternion -- size = [batch_size, 3, 3]
"""
norm_quat = quat
norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True)
w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:, 2], norm_quat[:, 3]
batch_size = quat.size(0)
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2)
wx, wy, wz = w * x, w * y, w * z
xy, xz, yz = x * y, x * z, y * z
rotMat = torch.stack(
[
w2 + x2 - y2 - z2,
2 * xy - 2 * wz,
2 * wy + 2 * xz,
2 * wz + 2 * xy,
w2 - x2 + y2 - z2,
2 * yz - 2 * wx,
2 * xz - 2 * wy,
2 * wx + 2 * yz,
w2 - x2 - y2 + z2,
],
dim=1,
).view(batch_size, 3, 3)
return rotMat
def batch_aa2rot(axisang):
# This function is borrowed from https://github.com/MandyMo/pytorch_HMR/blob/master/src/util.py#L37
assert len(axisang.shape) == 2
assert axisang.shape[1] == 3
# axisang N x 3
axisang_norm = torch.norm(axisang + 1e-8, p=2, dim=1)
angle = torch.unsqueeze(axisang_norm, -1)
axisang_normalized = torch.div(axisang, angle)
angle = angle * 0.5
v_cos = torch.cos(angle)
v_sin = torch.sin(angle)
quat = torch.cat([v_cos, v_sin * axisang_normalized], dim=1)
rot_mat = quat2mat(quat)
rot_mat = rot_mat.view(rot_mat.shape[0], 9)
return rot_mat
def batch_rot2aa(Rs):
assert len(Rs.shape) == 3
assert Rs.shape[1] == Rs.shape[2]
assert Rs.shape[1] == 3
"""
Rs is B x 3 x 3
void cMathUtil::RotMatToAxisAngle(const tMatrix& mat, tVector& out_axis,
double& out_theta)
{
double c = 0.5 * (mat(0, 0) + mat(1, 1) + mat(2, 2) - 1);
c = cMathUtil::Clamp(c, -1.0, 1.0);
out_theta = std::acos(c);
if (std::abs(out_theta) < 0.00001)
{
out_axis = tVector(0, 0, 1, 0);
}
else
{
double m21 = mat(2, 1) - mat(1, 2);
double m02 = mat(0, 2) - mat(2, 0);
double m10 = mat(1, 0) - mat(0, 1);
double denom = std::sqrt(m21 * m21 + m02 * m02 + m10 * m10);
out_axis[0] = m21 / denom;
out_axis[1] = m02 / denom;
out_axis[2] = m10 / denom;
out_axis[3] = 0;
}
}
"""
cos = 0.5 * (torch.stack([torch.trace(x) for x in Rs]) - 1)
cos = torch.clamp(cos, -1, 1)
theta = torch.acos(cos)
m21 = Rs[:, 2, 1] - Rs[:, 1, 2]
m02 = Rs[:, 0, 2] - Rs[:, 2, 0]
m10 = Rs[:, 1, 0] - Rs[:, 0, 1]
denom = torch.sqrt(m21 * m21 + m02 * m02 + m10 * m10)
axis0 = torch.where(torch.abs(theta) < 0.00001, m21, m21 / denom)
axis1 = torch.where(torch.abs(theta) < 0.00001, m02, m02 / denom)
axis2 = torch.where(torch.abs(theta) < 0.00001, m10, m10 / denom)
return theta.unsqueeze(1) * torch.stack([axis0, axis1, axis2], 1)
def batch_rodrigues(theta):
"""Convert axis-angle representation to rotation matrix.
Args:
theta: size = [B, 3]
Returns:
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3]
"""
l1norm = torch.norm(theta + 1e-8, p=2, dim=1)
angle = torch.unsqueeze(l1norm, -1)
normalized = torch.div(theta, angle)
angle = angle * 0.5
v_cos = torch.cos(angle)
v_sin = torch.sin(angle)
quat = torch.cat([v_cos, v_sin * normalized], dim=1)
return quat_to_rotmat(quat)
def quat_to_rotmat(quat):
"""Convert quaternion coefficients to rotation matrix.
Args:
quat: size = [B, 4] 4 <===>(w, x, y, z)
Returns:
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3]
"""
norm_quat = quat
norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True)
w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:, 2], norm_quat[:, 3]
B = quat.size(0)
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2)
wx, wy, wz = w * x, w * y, w * z
xy, xz, yz = x * y, x * z, y * z
rotMat = torch.stack(
[
w2 + x2 - y2 - z2,
2 * xy - 2 * wz,
2 * wy + 2 * xz,
2 * wz + 2 * xy,
w2 - x2 + y2 - z2,
2 * yz - 2 * wx,
2 * xz - 2 * wy,
2 * wx + 2 * yz,
w2 - x2 - y2 + z2,
],
dim=1,
).view(B, 3, 3)
return rotMat
def rot6d_to_rotmat(x):
"""Convert 6D rotation representation to 3x3 rotation matrix.
Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019
Input:
(B,6) Batch of 6-D rotation representations
Output:
(B,3,3) Batch of corresponding rotation matrices
"""
x = x.reshape(-1, 3, 2)
a1 = x[:, :, 0]
a2 = x[:, :, 1]
b1 = F.normalize(a1)
b2 = F.normalize(a2 - torch.einsum("bi,bi->b", b1, a2).unsqueeze(-1) * b1)
b3 = torch.cross(b1, b2)
return torch.stack((b1, b2, b3), dim=-1)
def rotmat_to_rot6d(x):
rotmat = x.reshape(-1, 3, 3)
rot6d = rotmat[:, :, :2].reshape(x.shape[0], -1)
return rot6d
def rotation_matrix_to_angle_axis(rotation_matrix):
"""
This function is borrowed from https://github.com/kornia/kornia
Convert 3x4 rotation matrix to Rodrigues vector
Args:
rotation_matrix (Tensor): rotation matrix.
Returns:
Tensor: Rodrigues vector transformation.
Shape:
- Input: :math:`(N, 3, 4)`
- Output: :math:`(N, 3)`
Example:
>>> input = torch.rand(2, 3, 4) # Nx4x4
>>> output = tgm.rotation_matrix_to_angle_axis(input) # Nx3
"""
if rotation_matrix.shape[1:] == (3, 3):
rot_mat = rotation_matrix.reshape(-1, 3, 3)
hom = (
torch.tensor([0, 0, 1], dtype=torch.float32, device=rotation_matrix.device)
.reshape(1, 3, 1)
.expand(rot_mat.shape[0], -1, -1)
)
rotation_matrix = torch.cat([rot_mat, hom], dim=-1)
quaternion = rotation_matrix_to_quaternion(rotation_matrix)
aa = quaternion_to_angle_axis(quaternion)
aa[torch.isnan(aa)] = 0.0
return aa
def quaternion_to_angle_axis(quaternion: torch.Tensor) -> torch.Tensor:
"""
This function is borrowed from https://github.com/kornia/kornia
Convert quaternion vector to angle axis of rotation.
Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h
Args:
quaternion (torch.Tensor): tensor with quaternions.
Return:
torch.Tensor: tensor with angle axis of rotation.
Shape:
- Input: :math:`(*, 4)` where `*` means, any number of dimensions
- Output: :math:`(*, 3)`
Example:
>>> quaternion = torch.rand(2, 4) # Nx4
>>> angle_axis = tgm.quaternion_to_angle_axis(quaternion) # Nx3
"""
if not torch.is_tensor(quaternion):
raise TypeError(
"Input type is not a torch.Tensor. Got {}".format(type(quaternion))
)
if not quaternion.shape[-1] == 4:
raise ValueError(
"Input must be a tensor of shape Nx4 or 4. Got {}".format(quaternion.shape)
)
# unpack input and compute conversion
q1: torch.Tensor = quaternion[..., 1]
q2: torch.Tensor = quaternion[..., 2]
q3: torch.Tensor = quaternion[..., 3]
sin_squared_theta: torch.Tensor = q1 * q1 + q2 * q2 + q3 * q3
sin_theta: torch.Tensor = torch.sqrt(sin_squared_theta)
cos_theta: torch.Tensor = quaternion[..., 0]
two_theta: torch.Tensor = 2.0 * torch.where(
cos_theta < 0.0,
torch.atan2(-sin_theta, -cos_theta),
torch.atan2(sin_theta, cos_theta),
)
k_pos: torch.Tensor = two_theta / sin_theta
k_neg: torch.Tensor = 2.0 * torch.ones_like(sin_theta)
k: torch.Tensor = torch.where(sin_squared_theta > 0.0, k_pos, k_neg)
angle_axis: torch.Tensor = torch.zeros_like(quaternion)[..., :3]
angle_axis[..., 0] += q1 * k
angle_axis[..., 1] += q2 * k
angle_axis[..., 2] += q3 * k
return angle_axis
def rotation_matrix_to_quaternion(rotation_matrix, eps=1e-6):
"""
This function is borrowed from https://github.com/kornia/kornia
Convert 3x4 rotation matrix to 4d quaternion vector
This algorithm is based on algorithm described in
https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L201
Args:
rotation_matrix (Tensor): the rotation matrix to convert.
Return:
Tensor: the rotation in quaternion
Shape:
- Input: :math:`(N, 3, 4)`
- Output: :math:`(N, 4)`
Example:
>>> input = torch.rand(4, 3, 4) # Nx3x4
>>> output = tgm.rotation_matrix_to_quaternion(input) # Nx4
"""
if not torch.is_tensor(rotation_matrix):
raise TypeError(
"Input type is not a torch.Tensor. Got {}".format(type(rotation_matrix))
)
if len(rotation_matrix.shape) > 3:
raise ValueError(
"Input size must be a three dimensional tensor. Got {}".format(
rotation_matrix.shape
)
)
if not rotation_matrix.shape[-2:] == (3, 4):
raise ValueError(
"Input size must be a N x 3 x 4 tensor. Got {}".format(
rotation_matrix.shape
)
)
rmat_t = torch.transpose(rotation_matrix, 1, 2)
mask_d2 = rmat_t[:, 2, 2] < eps
mask_d0_d1 = rmat_t[:, 0, 0] > rmat_t[:, 1, 1]
mask_d0_nd1 = rmat_t[:, 0, 0] < -rmat_t[:, 1, 1]
t0 = 1 + rmat_t[:, 0, 0] - rmat_t[:, 1, 1] - rmat_t[:, 2, 2]
q0 = torch.stack(
[
rmat_t[:, 1, 2] - rmat_t[:, 2, 1],
t0,
rmat_t[:, 0, 1] + rmat_t[:, 1, 0],
rmat_t[:, 2, 0] + rmat_t[:, 0, 2],
],
-1,
)
t0_rep = t0.repeat(4, 1).t()
t1 = 1 - rmat_t[:, 0, 0] + rmat_t[:, 1, 1] - rmat_t[:, 2, 2]
q1 = torch.stack(
[
rmat_t[:, 2, 0] - rmat_t[:, 0, 2],
rmat_t[:, 0, 1] + rmat_t[:, 1, 0],
t1,
rmat_t[:, 1, 2] + rmat_t[:, 2, 1],
],
-1,
)
t1_rep = t1.repeat(4, 1).t()
t2 = 1 - rmat_t[:, 0, 0] - rmat_t[:, 1, 1] + rmat_t[:, 2, 2]
q2 = torch.stack(
[
rmat_t[:, 0, 1] - rmat_t[:, 1, 0],
rmat_t[:, 2, 0] + rmat_t[:, 0, 2],
rmat_t[:, 1, 2] + rmat_t[:, 2, 1],
t2,
],
-1,
)
t2_rep = t2.repeat(4, 1).t()
t3 = 1 + rmat_t[:, 0, 0] + rmat_t[:, 1, 1] + rmat_t[:, 2, 2]
q3 = torch.stack(
[
t3,
rmat_t[:, 1, 2] - rmat_t[:, 2, 1],
rmat_t[:, 2, 0] - rmat_t[:, 0, 2],
rmat_t[:, 0, 1] - rmat_t[:, 1, 0],
],
-1,
)
t3_rep = t3.repeat(4, 1).t()
mask_c0 = mask_d2 * mask_d0_d1
mask_c1 = mask_d2 * ~mask_d0_d1
mask_c2 = ~mask_d2 * mask_d0_nd1
mask_c3 = ~mask_d2 * ~mask_d0_nd1
mask_c0 = mask_c0.view(-1, 1).type_as(q0)
mask_c1 = mask_c1.view(-1, 1).type_as(q1)
mask_c2 = mask_c2.view(-1, 1).type_as(q2)
mask_c3 = mask_c3.view(-1, 1).type_as(q3)
q = q0 * mask_c0 + q1 * mask_c1 + q2 * mask_c2 + q3 * mask_c3
q /= torch.sqrt(
t0_rep * mask_c0
+ t1_rep * mask_c1
+ t2_rep * mask_c2 # noqa
+ t3_rep * mask_c3
) # noqa
q *= 0.5
return q
def batch_euler2matrix(r):
return quaternion_to_rotation_matrix(euler_to_quaternion(r))
def euler_to_quaternion(r):
x = r[..., 0]
y = r[..., 1]
z = r[..., 2]
z = z / 2.0
y = y / 2.0
x = x / 2.0
cz = torch.cos(z)
sz = torch.sin(z)
cy = torch.cos(y)
sy = torch.sin(y)
cx = torch.cos(x)
sx = torch.sin(x)
quaternion = torch.zeros_like(r.repeat(1, 2))[..., :4].to(r.device)
quaternion[..., 0] += cx * cy * cz - sx * sy * sz
quaternion[..., 1] += cx * sy * sz + cy * cz * sx
quaternion[..., 2] += cx * cz * sy - sx * cy * sz
quaternion[..., 3] += cx * cy * sz + sx * cz * sy
return quaternion
def quaternion_to_rotation_matrix(quat):
"""Convert quaternion coefficients to rotation matrix.
Args:
quat: size = [B, 4] 4 <===>(w, x, y, z)
Returns:
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3]
"""
norm_quat = quat
norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True)
w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:, 2], norm_quat[:, 3]
B = quat.size(0)
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2)
wx, wy, wz = w * x, w * y, w * z
xy, xz, yz = x * y, x * z, y * z
rotMat = torch.stack(
[
w2 + x2 - y2 - z2,
2 * xy - 2 * wz,
2 * wy + 2 * xz,
2 * wz + 2 * xy,
w2 - x2 + y2 - z2,
2 * yz - 2 * wx,
2 * xz - 2 * wy,
2 * wx + 2 * yz,
w2 - x2 - y2 + z2,
],
dim=1,
).view(B, 3, 3)
return rotMat
def euler_angles_from_rotmat(R):
"""
computer euler angles for rotation around x, y, z axis
from rotation amtrix
R: 4x4 rotation matrix
https://www.gregslabaugh.net/publications/euler.pdf
"""
r21 = np.round(R[:, 2, 0].item(), 4)
if abs(r21) != 1:
y_angle1 = -1 * torch.asin(R[:, 2, 0])
y_angle2 = math.pi + torch.asin(R[:, 2, 0])
cy1, cy2 = torch.cos(y_angle1), torch.cos(y_angle2)
x_angle1 = torch.atan2(R[:, 2, 1] / cy1, R[:, 2, 2] / cy1)
x_angle2 = torch.atan2(R[:, 2, 1] / cy2, R[:, 2, 2] / cy2)
z_angle1 = torch.atan2(R[:, 1, 0] / cy1, R[:, 0, 0] / cy1)
z_angle2 = torch.atan2(R[:, 1, 0] / cy2, R[:, 0, 0] / cy2)
s1 = (x_angle1, y_angle1, z_angle1)
s2 = (x_angle2, y_angle2, z_angle2)
s = (s1, s2)
else:
z_angle = torch.tensor([0], device=R.device).float()
if r21 == -1:
y_angle = torch.tensor([math.pi / 2], device=R.device).float()
x_angle = z_angle + torch.atan2(R[:, 0, 1], R[:, 0, 2])
else:
y_angle = -torch.tensor([math.pi / 2], device=R.device).float()
x_angle = -z_angle + torch.atan2(-R[:, 0, 1], R[:, 0, 2])
s = ((x_angle, y_angle, z_angle),)
return s
def quaternion_raw_multiply(a, b):
"""
Source: https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/transforms/rotation_conversions.py
Multiply two quaternions.
Usual torch rules for broadcasting apply.
Args:
a: Quaternions as tensor of shape (..., 4), real part first.
b: Quaternions as tensor of shape (..., 4), real part first.
Returns:
The product of a and b, a tensor of quaternions shape (..., 4).
"""
aw, ax, ay, az = torch.unbind(a, -1)
bw, bx, by, bz = torch.unbind(b, -1)
ow = aw * bw - ax * bx - ay * by - az * bz
ox = aw * bx + ax * bw + ay * bz - az * by
oy = aw * by - ax * bz + ay * bw + az * bx
oz = aw * bz + ax * by - ay * bx + az * bw
return torch.stack((ow, ox, oy, oz), -1)
def quaternion_invert(quaternion):
"""
Source: https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/transforms/rotation_conversions.py
Given a quaternion representing rotation, get the quaternion representing
its inverse.
Args:
quaternion: Quaternions as tensor of shape (..., 4), with real part
first, which must be versors (unit quaternions).
Returns:
The inverse, a tensor of quaternions of shape (..., 4).
"""
return quaternion * quaternion.new_tensor([1, -1, -1, -1])
def quaternion_apply(quaternion, point):
"""
Source: https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/transforms/rotation_conversions.py
Apply the rotation given by a quaternion to a 3D point.
Usual torch rules for broadcasting apply.
Args:
quaternion: Tensor of quaternions, real part first, of shape (..., 4).
point: Tensor of 3D points of shape (..., 3).
Returns:
Tensor of rotated points of shape (..., 3).
"""
if point.size(-1) != 3:
raise ValueError(f"Points are not in 3D, f{point.shape}.")
real_parts = point.new_zeros(point.shape[:-1] + (1,))
point_as_quaternion = torch.cat((real_parts, point), -1)
out = quaternion_raw_multiply(
quaternion_raw_multiply(quaternion, point_as_quaternion),
quaternion_invert(quaternion),
)
return out[..., 1:]
def axis_angle_to_quaternion(axis_angle: torch.Tensor) -> torch.Tensor:
"""
Source: https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/transforms/rotation_conversions.py
Convert rotations given as axis/angle to quaternions.
Args:
axis_angle: Rotations given as a vector in axis angle form,
as a tensor of shape (..., 3), where the magnitude is
the angle turned anticlockwise in radians around the
vector's direction.
Returns:
quaternions with real part first, as tensor of shape (..., 4).
"""
angles = torch.norm(axis_angle, p=2, dim=-1, keepdim=True)
half_angles = angles * 0.5
eps = 1e-6
small_angles = angles.abs() < eps
sin_half_angles_over_angles = torch.empty_like(angles)
sin_half_angles_over_angles[~small_angles] = (
torch.sin(half_angles[~small_angles]) / angles[~small_angles]
)
# for x small, sin(x/2) is about x/2 - (x/2)^3/6
# so sin(x/2)/x is about 1/2 - (x*x)/48
sin_half_angles_over_angles[small_angles] = (
0.5 - (angles[small_angles] * angles[small_angles]) / 48
)
quaternions = torch.cat(
[torch.cos(half_angles), axis_angle * sin_half_angles_over_angles], dim=-1
)
return quaternions