cldm/__pycache__/cldm.cpython-38.pyc ADDED
Binary file (11.8 kB). View file
 
cldm/__pycache__/ddim_hacked.cpython-38.pyc ADDED
Binary file (8.73 kB). View file
 
cldm/__pycache__/hack.cpython-38.pyc ADDED
Binary file (3.89 kB). View file
 
cldm/__pycache__/model.cpython-38.pyc ADDED
Binary file (1.09 kB). View file
 
cldm/cldm.py ADDED
@@ -0,0 +1,470 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import einops
2
+ import torch
3
+ import torch as th
4
+ import torch.nn as nn
5
+
6
+ from ldm.modules.diffusionmodules.util import (
7
+ conv_nd,
8
+ linear,
9
+ zero_module,
10
+ timestep_embedding,
11
+ )
12
+
13
+ from einops import rearrange, repeat
14
+ from torchvision.utils import make_grid
15
+ from ldm.modules.attention import SpatialTransformer
16
+ from ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock
17
+ from ldm.models.diffusion.ddpm import LatentDiffusion
18
+ from ldm.util import log_txt_as_img, exists, instantiate_from_config
19
+ from ldm.models.diffusion.ddim import DDIMSampler
20
+
21
+
22
+ class ControlledUnetModel(UNetModel):
23
+ def forward(self, x, timesteps=None, context=None, control=None, only_mid_control=False, **kwargs):
24
+ hs = []
25
+ with torch.no_grad():
26
+ t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
27
+ emb = self.time_embed(t_emb)
28
+ h = x.type(self.dtype)
29
+ for module in self.input_blocks:
30
+ h = module(h, emb, context)
31
+ hs.append(h)
32
+ h = self.middle_block(h, emb, context)
33
+
34
+ if control is not None:
35
+ h += control.pop()
36
+
37
+ for i, module in enumerate(self.output_blocks):
38
+ if only_mid_control or control is None:
39
+ h = torch.cat([h, hs.pop()], dim=1)
40
+ else:
41
+ h = torch.cat([h, hs.pop() + control.pop()], dim=1)
42
+ h = module(h, emb, context)
43
+
44
+ h = h.type(x.dtype)
45
+ return self.out(h)
46
+
47
+
48
+ class ControlNet(nn.Module):
49
+ def __init__(
50
+ self,
51
+ image_size,
52
+ in_channels,
53
+ model_channels,
54
+ hint_channels,
55
+ num_res_blocks,
56
+ attention_resolutions,
57
+ dropout=0,
58
+ channel_mult=(1, 2, 4, 8),
59
+ conv_resample=True,
60
+ dims=2,
61
+ use_checkpoint=False,
62
+ use_fp16=False,
63
+ num_heads=-1,
64
+ num_head_channels=-1,
65
+ num_heads_upsample=-1,
66
+ use_scale_shift_norm=False,
67
+ resblock_updown=False,
68
+ use_new_attention_order=False,
69
+ use_spatial_transformer=False, # custom transformer support
70
+ transformer_depth=1, # custom transformer support
71
+ context_dim=None, # custom transformer support
72
+ n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
73
+ legacy=True,
74
+ disable_self_attentions=None,
75
+ num_attention_blocks=None,
76
+ disable_middle_self_attn=False,
77
+ use_linear_in_transformer=False,
78
+ latent_control=False,
79
+ noise_control=False
80
+ ):
81
+ super().__init__()
82
+ if use_spatial_transformer:
83
+ assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
84
+
85
+ if context_dim is not None:
86
+ assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
87
+ from omegaconf.listconfig import ListConfig
88
+ if type(context_dim) == ListConfig:
89
+ context_dim = list(context_dim)
90
+
91
+ if num_heads_upsample == -1:
92
+ num_heads_upsample = num_heads
93
+
94
+ if num_heads == -1:
95
+ assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
96
+
97
+ if num_head_channels == -1:
98
+ assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
99
+
100
+ self.dims = dims
101
+ self.image_size = image_size
102
+ self.in_channels = in_channels
103
+ self.model_channels = model_channels
104
+ if isinstance(num_res_blocks, int):
105
+ self.num_res_blocks = len(channel_mult) * [num_res_blocks]
106
+ else:
107
+ if len(num_res_blocks) != len(channel_mult):
108
+ raise ValueError("provide num_res_blocks either as an int (globally constant) or "
109
+ "as a list/tuple (per-level) with the same length as channel_mult")
110
+ self.num_res_blocks = num_res_blocks
111
+ if disable_self_attentions is not None:
112
+ # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
113
+ assert len(disable_self_attentions) == len(channel_mult)
114
+ if num_attention_blocks is not None:
115
+ assert len(num_attention_blocks) == len(self.num_res_blocks)
116
+ assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
117
+ print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
118
+ f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
119
+ f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
120
+ f"attention will still not be set.")
121
+
122
+ self.attention_resolutions = attention_resolutions
123
+ self.dropout = dropout
124
+ self.channel_mult = channel_mult
125
+ self.conv_resample = conv_resample
126
+ self.use_checkpoint = use_checkpoint
127
+ self.dtype = th.float16 if use_fp16 else th.float32
128
+ self.num_heads = num_heads
129
+ self.num_head_channels = num_head_channels
130
+ self.num_heads_upsample = num_heads_upsample
131
+ self.predict_codebook_ids = n_embed is not None
132
+
133
+ time_embed_dim = model_channels * 4
134
+ self.time_embed = nn.Sequential(
135
+ linear(model_channels, time_embed_dim),
136
+ nn.SiLU(),
137
+ linear(time_embed_dim, time_embed_dim),
138
+ )
139
+
140
+ self.input_blocks = nn.ModuleList(
141
+ [
142
+ TimestepEmbedSequential(
143
+ conv_nd(dims, in_channels, model_channels, 3, padding=1)
144
+ )
145
+ ]
146
+ )
147
+ self.latent_control = latent_control
148
+ self.noise_control = noise_control
149
+ self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)])
150
+ if self.latent_control:
151
+ self.input_hint_block = TimestepEmbedSequential(
152
+ zero_module(conv_nd(dims, hint_channels, model_channels, 3, padding=1))
153
+ )
154
+ else:
155
+ # 输入段,这一段参数都是需要训练的,要改成隐码输入,就要改变结构,这也是原设计中控制分支里面和主网络不对称的结构
156
+ # 原来的controlNet中,不管输入输出的图像是多大,control 都是 256x256
157
+ self.input_hint_block = TimestepEmbedSequential(
158
+ conv_nd(dims, hint_channels, 16, 3, padding=1),
159
+ nn.SiLU(),
160
+ conv_nd(dims, 16, 16, 3, padding=1),
161
+ nn.SiLU(),
162
+ conv_nd(dims, 16, 32, 3, padding=1, stride=2), # 256 -> 128
163
+ nn.SiLU(),
164
+ conv_nd(dims, 32, 32, 3, padding=1),
165
+ nn.SiLU(),
166
+ conv_nd(dims, 32, 96, 3, padding=1, stride=2), # 128 -> 64
167
+ nn.SiLU(),
168
+ conv_nd(dims, 96, 96, 3, padding=1),
169
+ nn.SiLU(),
170
+ conv_nd(dims, 96, 256, 3, padding=1, stride=2), # 64 -> 32
171
+ nn.SiLU(),
172
+ zero_module(conv_nd(dims, 256, model_channels, 3, padding=1))
173
+ )
174
+
175
+ self._feature_size = model_channels
176
+ input_block_chans = [model_channels]
177
+ ch = model_channels
178
+ ds = 1
179
+ for level, mult in enumerate(channel_mult):
180
+ for nr in range(self.num_res_blocks[level]):
181
+ layers = [
182
+ ResBlock(
183
+ ch,
184
+ time_embed_dim,
185
+ dropout,
186
+ out_channels=mult * model_channels,
187
+ dims=dims,
188
+ use_checkpoint=use_checkpoint,
189
+ use_scale_shift_norm=use_scale_shift_norm,
190
+ )
191
+ ]
192
+ ch = mult * model_channels
193
+ if ds in attention_resolutions:
194
+ if num_head_channels == -1:
195
+ dim_head = ch // num_heads
196
+ else:
197
+ num_heads = ch // num_head_channels
198
+ dim_head = num_head_channels
199
+ if legacy:
200
+ # num_heads = 1
201
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels # use_spatial_transformer=True
202
+ if exists(disable_self_attentions):
203
+ disabled_sa = disable_self_attentions[level]
204
+ else:
205
+ disabled_sa = False
206
+
207
+ if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
208
+ layers.append(
209
+ AttentionBlock(
210
+ ch,
211
+ use_checkpoint=use_checkpoint,
212
+ num_heads=num_heads,
213
+ num_head_channels=dim_head,
214
+ use_new_attention_order=use_new_attention_order,
215
+ ) if not use_spatial_transformer else SpatialTransformer(
216
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
217
+ disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
218
+ use_checkpoint=use_checkpoint
219
+ )
220
+ )
221
+ self.input_blocks.append(TimestepEmbedSequential(*layers))
222
+ self.zero_convs.append(self.make_zero_conv(ch))
223
+ self._feature_size += ch
224
+ input_block_chans.append(ch)
225
+ if level != len(channel_mult) - 1:
226
+ out_ch = ch
227
+ self.input_blocks.append(
228
+ TimestepEmbedSequential(
229
+ ResBlock(
230
+ ch,
231
+ time_embed_dim,
232
+ dropout,
233
+ out_channels=out_ch,
234
+ dims=dims,
235
+ use_checkpoint=use_checkpoint,
236
+ use_scale_shift_norm=use_scale_shift_norm,
237
+ down=True,
238
+ )
239
+ if resblock_updown
240
+ else Downsample(
241
+ ch, conv_resample, dims=dims, out_channels=out_ch
242
+ )
243
+ )
244
+ )
245
+ ch = out_ch
246
+ input_block_chans.append(ch)
247
+ self.zero_convs.append(self.make_zero_conv(ch))
248
+ ds *= 2
249
+ self._feature_size += ch
250
+
251
+ if num_head_channels == -1:
252
+ dim_head = ch // num_heads
253
+ else:
254
+ num_heads = ch // num_head_channels
255
+ dim_head = num_head_channels
256
+ if legacy:
257
+ # num_heads = 1
258
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
259
+ self.middle_block = TimestepEmbedSequential(
260
+ ResBlock(
261
+ ch,
262
+ time_embed_dim,
263
+ dropout,
264
+ dims=dims,
265
+ use_checkpoint=use_checkpoint,
266
+ use_scale_shift_norm=use_scale_shift_norm,
267
+ ),
268
+ AttentionBlock(
269
+ ch,
270
+ use_checkpoint=use_checkpoint,
271
+ num_heads=num_heads,
272
+ num_head_channels=dim_head,
273
+ use_new_attention_order=use_new_attention_order,
274
+ ) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
275
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
276
+ disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
277
+ use_checkpoint=use_checkpoint
278
+ ),
279
+ ResBlock(
280
+ ch,
281
+ time_embed_dim,
282
+ dropout,
283
+ dims=dims,
284
+ use_checkpoint=use_checkpoint,
285
+ use_scale_shift_norm=use_scale_shift_norm,
286
+ ),
287
+ )
288
+ self.middle_block_out = self.make_zero_conv(ch)
289
+ self._feature_size += ch
290
+
291
+ def make_zero_conv(self, channels):
292
+ return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0)))
293
+
294
+ def forward(self, x, hint, timesteps, context, **kwargs):
295
+ t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
296
+ emb = self.time_embed(t_emb)
297
+
298
+ if not self.noise_control:
299
+ guided_hint = self.input_hint_block(hint, emb, context)
300
+ h = x.type(self.dtype)
301
+ else:
302
+ guided_hint = None
303
+ h = hint.type(self.dtype)
304
+
305
+ outs = []
306
+ for module, zero_conv in zip(self.input_blocks, self.zero_convs):
307
+ if guided_hint is not None:
308
+ h = module(h, emb, context)
309
+ h += guided_hint
310
+ guided_hint = None
311
+ else:
312
+ h = module(h, emb, context)
313
+ outs.append(zero_conv(h, emb, context))
314
+
315
+ h = self.middle_block(h, emb, context)
316
+ outs.append(self.middle_block_out(h, emb, context)) # 分支先预测,把所有的outs都出来
317
+
318
+ return outs
319
+
320
+
321
+ class ControlLDM(LatentDiffusion):
322
+
323
+ def __init__(self, control_stage_config, control_key, only_mid_control, *args, **kwargs):
324
+ super().__init__(*args, **kwargs)
325
+ self.control_model = instantiate_from_config(control_stage_config)
326
+ self.control_key = control_key
327
+ self.only_mid_control = only_mid_control
328
+ self.control_scales = [1.0] * 13
329
+
330
+
331
+ @torch.no_grad()
332
+ def get_input(self, batch, k, bs=None, *args, **kwargs):
333
+ x, c = super().get_input(batch, self.first_stage_key, *args, **kwargs)
334
+ control = batch[self.control_key]
335
+ if bs is not None:
336
+ control = control[:bs]
337
+ control = control.to(self.device)
338
+ control = einops.rearrange(control, 'b h w c -> b c h w')
339
+ control = control.to(memory_format=torch.contiguous_format).float()
340
+ # 之前用了一个预抽取的方法,不能兼容数据增强,所以改写
341
+ if self.control_model.latent_control:
342
+ control = (control * 2.0) - 1.0
343
+ control = self.encode_first_stage(control).mean
344
+ ctrl_loss_params = {}
345
+ if (self.l_coltrans_weight > 0 or self.l_mrcoltrans_weight > 0 or self.l_idcoltrans_weight > 0 or self.l_mridcoltrans_weight > 0) and "ctrl_mask" in batch.keys(): # 后面一个条件是为了兼容 test 和 sample 脚本
346
+ mask = batch["ctrl_mask"]
347
+ if bs is not None:
348
+ mask = mask[:bs]
349
+ mask = mask.to(self.device)
350
+ ctrl_loss_params["ctrl_mask"] = mask
351
+ tgt_rgb = batch["tgt"]
352
+ if bs is not None:
353
+ tgt_rgb = tgt_rgb[:bs]
354
+ tgt_rgb = tgt_rgb.to(self.device)
355
+ ctrl_loss_params["tgt_rgb"] = tgt_rgb
356
+ ctrl_rgb = batch["ctrl"]
357
+ if bs is not None:
358
+ ctrl_rgb = ctrl_rgb[:bs]
359
+ ctrl_rgb = ctrl_rgb.to(self.device)
360
+ ctrl_loss_params["ctrl_rgb"] = ctrl_rgb
361
+ return x, dict(c_crossattn=[c], c_concat=[control])
362
+
363
+ def apply_model(self, x_noisy, t, cond, *args, **kwargs):
364
+ assert isinstance(cond, dict)
365
+ diffusion_model = self.model.diffusion_model
366
+
367
+ cond_txt = torch.cat(cond['c_crossattn'], 1)
368
+
369
+ if cond['c_concat'] is None:
370
+ eps = diffusion_model(x=x_noisy, timesteps=t, context=cond_txt, control=None, only_mid_control=self.only_mid_control)
371
+ else:
372
+ control = self.control_model(x=x_noisy, hint=torch.cat(cond['c_concat'], 1), timesteps=t, context=cond_txt)
373
+ control = [c * scale for c, scale in zip(control, self.control_scales)]
374
+ eps = diffusion_model(x=x_noisy, timesteps=t, context=cond_txt, control=control, only_mid_control=self.only_mid_control)
375
+
376
+ return eps
377
+
378
+ @torch.no_grad()
379
+ def get_unconditional_conditioning(self, N):
380
+ return self.get_learned_conditioning([""] * N)
381
+
382
+ @torch.no_grad()
383
+ def log_images(self, batch, N=4, n_row=2, sample=False, ddim_steps=50, ddim_eta=0.0, return_keys=None,
384
+ quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
385
+ plot_diffusion_rows=False, unconditional_guidance_scale=9.0, unconditional_guidance_label=None,
386
+ use_ema_scope=True,
387
+ **kwargs):
388
+ use_ddim = ddim_steps is not None
389
+
390
+ log = dict()
391
+ z, c = self.get_input(batch, self.first_stage_key, bs=N)
392
+ c_cat, c = c["c_concat"][0][:N], c["c_crossattn"][0][:N]
393
+ N = min(z.shape[0], N)
394
+ n_row = min(z.shape[0], n_row)
395
+ log["reconstruction"] = self.decode_first_stage(z)
396
+ log["control"] = c_cat * 2.0 - 1.0
397
+ log["conditioning"] = log_txt_as_img((512, 512), batch[self.cond_stage_key], size=16)
398
+
399
+ if plot_diffusion_rows:
400
+ # get diffusion row
401
+ diffusion_row = list()
402
+ z_start = z[:n_row]
403
+ for t in range(self.num_timesteps):
404
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
405
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
406
+ t = t.to(self.device).long()
407
+ noise = torch.randn_like(z_start)
408
+ z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
409
+ diffusion_row.append(self.decode_first_stage(z_noisy))
410
+
411
+ diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
412
+ diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
413
+ diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
414
+ diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
415
+ log["diffusion_row"] = diffusion_grid
416
+
417
+ if sample:
418
+ # get denoise row
419
+ samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
420
+ batch_size=N, ddim=use_ddim,
421
+ ddim_steps=ddim_steps, eta=ddim_eta)
422
+ x_samples = self.decode_first_stage(samples)
423
+ log["samples"] = x_samples
424
+ if plot_denoise_rows:
425
+ denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
426
+ log["denoise_row"] = denoise_grid
427
+
428
+ if unconditional_guidance_scale > 1.0:
429
+ uc_cross = self.get_unconditional_conditioning(N)
430
+ uc_cat = c_cat # torch.zeros_like(c_cat)
431
+ uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]}
432
+ samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
433
+ batch_size=N, ddim=use_ddim,
434
+ ddim_steps=ddim_steps, eta=ddim_eta,
435
+ unconditional_guidance_scale=unconditional_guidance_scale,
436
+ unconditional_conditioning=uc_full,
437
+ )
438
+ x_samples_cfg = self.decode_first_stage(samples_cfg)
439
+ log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
440
+
441
+ return log
442
+
443
+ @torch.no_grad()
444
+ def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
445
+ ddim_sampler = DDIMSampler(self)
446
+ b, c, h, w = cond["c_concat"][0].shape
447
+ shape = (self.channels, h // 8, w // 8)
448
+ samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size, shape, cond, verbose=False, **kwargs)
449
+ return samples, intermediates
450
+
451
+ def configure_optimizers(self):
452
+ lr = self.learning_rate
453
+ params = list(self.control_model.parameters())
454
+ if not self.sd_locked:
455
+ params += list(self.model.diffusion_model.output_blocks.parameters())
456
+ params += list(self.model.diffusion_model.out.parameters())
457
+ opt = torch.optim.AdamW(params, lr=lr)
458
+ return opt
459
+
460
+ def low_vram_shift(self, is_diffusing):
461
+ if is_diffusing:
462
+ self.model = self.model.cuda()
463
+ self.control_model = self.control_model.cuda()
464
+ self.first_stage_model = self.first_stage_model.cpu()
465
+ self.cond_stage_model = self.cond_stage_model.cpu()
466
+ else:
467
+ self.model = self.model.cpu()
468
+ self.control_model = self.control_model.cpu()
469
+ self.first_stage_model = self.first_stage_model.cuda()
470
+ self.cond_stage_model = self.cond_stage_model.cuda()
cldm/ddim_hacked.py ADDED
@@ -0,0 +1,317 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """SAMPLING ONLY."""
2
+
3
+ import torch
4
+ import numpy as np
5
+ from tqdm import tqdm
6
+
7
+ from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
8
+
9
+
10
+ class DDIMSampler(object):
11
+ def __init__(self, model, schedule="linear", **kwargs):
12
+ super().__init__()
13
+ self.model = model
14
+ self.ddpm_num_timesteps = model.num_timesteps
15
+ self.schedule = schedule
16
+
17
+ def register_buffer(self, name, attr):
18
+ if type(attr) == torch.Tensor:
19
+ if attr.device != torch.device("cuda"):
20
+ attr = attr.to(torch.device("cuda"))
21
+ setattr(self, name, attr)
22
+
23
+ def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
24
+ self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
25
+ num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
26
+ alphas_cumprod = self.model.alphas_cumprod
27
+ assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
28
+ to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
29
+
30
+ self.register_buffer('betas', to_torch(self.model.betas))
31
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
32
+ self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
33
+
34
+ # calculations for diffusion q(x_t | x_{t-1}) and others
35
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
36
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
37
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
38
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
39
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
40
+
41
+ # ddim sampling parameters
42
+ ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
43
+ ddim_timesteps=self.ddim_timesteps,
44
+ eta=ddim_eta,verbose=verbose)
45
+ self.register_buffer('ddim_sigmas', ddim_sigmas)
46
+ self.register_buffer('ddim_alphas', ddim_alphas)
47
+ self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
48
+ self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
49
+ sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
50
+ (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
51
+ 1 - self.alphas_cumprod / self.alphas_cumprod_prev))
52
+ self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
53
+
54
+ @torch.no_grad()
55
+ def sample(self,
56
+ S,
57
+ batch_size,
58
+ shape,
59
+ conditioning=None,
60
+ callback=None,
61
+ normals_sequence=None,
62
+ img_callback=None,
63
+ quantize_x0=False,
64
+ eta=0.,
65
+ mask=None,
66
+ x0=None,
67
+ temperature=1.,
68
+ noise_dropout=0.,
69
+ score_corrector=None,
70
+ corrector_kwargs=None,
71
+ verbose=True,
72
+ x_T=None,
73
+ log_every_t=100,
74
+ unconditional_guidance_scale=1.,
75
+ unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
76
+ dynamic_threshold=None,
77
+ ucg_schedule=None,
78
+ **kwargs
79
+ ):
80
+ if conditioning is not None:
81
+ if isinstance(conditioning, dict):
82
+ ctmp = conditioning[list(conditioning.keys())[0]]
83
+ while isinstance(ctmp, list): ctmp = ctmp[0]
84
+ cbs = ctmp.shape[0]
85
+ if cbs != batch_size:
86
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
87
+
88
+ elif isinstance(conditioning, list):
89
+ for ctmp in conditioning:
90
+ if ctmp.shape[0] != batch_size:
91
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
92
+
93
+ else:
94
+ if conditioning.shape[0] != batch_size:
95
+ print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
96
+
97
+ self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
98
+ # sampling
99
+ C, H, W = shape
100
+ size = (batch_size, C, H, W)
101
+ print(f'Data shape for DDIM sampling is {size}, eta {eta}')
102
+
103
+ samples, intermediates = self.ddim_sampling(conditioning, size,
104
+ callback=callback,
105
+ img_callback=img_callback,
106
+ quantize_denoised=quantize_x0,
107
+ mask=mask, x0=x0,
108
+ ddim_use_original_steps=False,
109
+ noise_dropout=noise_dropout,
110
+ temperature=temperature,
111
+ score_corrector=score_corrector,
112
+ corrector_kwargs=corrector_kwargs,
113
+ x_T=x_T,
114
+ log_every_t=log_every_t,
115
+ unconditional_guidance_scale=unconditional_guidance_scale,
116
+ unconditional_conditioning=unconditional_conditioning,
117
+ dynamic_threshold=dynamic_threshold,
118
+ ucg_schedule=ucg_schedule
119
+ )
120
+ return samples, intermediates
121
+
122
+ @torch.no_grad()
123
+ def ddim_sampling(self, cond, shape,
124
+ x_T=None, ddim_use_original_steps=False,
125
+ callback=None, timesteps=None, quantize_denoised=False,
126
+ mask=None, x0=None, img_callback=None, log_every_t=100,
127
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
128
+ unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None,
129
+ ucg_schedule=None):
130
+ device = self.model.betas.device
131
+ b = shape[0]
132
+ if x_T is None:
133
+ img = torch.randn(shape, device=device)
134
+ else:
135
+ img = x_T
136
+
137
+ if timesteps is None:
138
+ timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
139
+ elif timesteps is not None and not ddim_use_original_steps:
140
+ subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
141
+ timesteps = self.ddim_timesteps[:subset_end]
142
+
143
+ intermediates = {'x_inter': [img], 'pred_x0': [img]}
144
+ time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
145
+ total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
146
+ print(f"Running DDIM Sampling with {total_steps} timesteps")
147
+
148
+ iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
149
+
150
+ for i, step in enumerate(iterator):
151
+ index = total_steps - i - 1
152
+ ts = torch.full((b,), step, device=device, dtype=torch.long)
153
+
154
+ if mask is not None:
155
+ assert x0 is not None
156
+ img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
157
+ img = img_orig * mask + (1. - mask) * img
158
+
159
+ if ucg_schedule is not None:
160
+ assert len(ucg_schedule) == len(time_range)
161
+ unconditional_guidance_scale = ucg_schedule[i]
162
+
163
+ outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
164
+ quantize_denoised=quantize_denoised, temperature=temperature,
165
+ noise_dropout=noise_dropout, score_corrector=score_corrector,
166
+ corrector_kwargs=corrector_kwargs,
167
+ unconditional_guidance_scale=unconditional_guidance_scale,
168
+ unconditional_conditioning=unconditional_conditioning,
169
+ dynamic_threshold=dynamic_threshold)
170
+ img, pred_x0 = outs
171
+ if callback: callback(i)
172
+ if img_callback: img_callback(pred_x0, i)
173
+
174
+ if index % log_every_t == 0 or index == total_steps - 1:
175
+ intermediates['x_inter'].append(img)
176
+ intermediates['pred_x0'].append(pred_x0)
177
+
178
+ return img, intermediates
179
+
180
+ @torch.no_grad()
181
+ def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
182
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
183
+ unconditional_guidance_scale=1., unconditional_conditioning=None,
184
+ dynamic_threshold=None):
185
+ b, *_, device = *x.shape, x.device
186
+
187
+ if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
188
+ model_output = self.model.apply_model(x, t, c)
189
+ else:
190
+ model_t = self.model.apply_model(x, t, c)
191
+ model_uncond = self.model.apply_model(x, t, unconditional_conditioning)
192
+ model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond)
193
+
194
+ if self.model.parameterization == "v":
195
+ e_t = self.model.predict_eps_from_z_and_v(x, t, model_output)
196
+ else:
197
+ e_t = model_output
198
+
199
+ if score_corrector is not None:
200
+ assert self.model.parameterization == "eps", 'not implemented'
201
+ e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
202
+
203
+ alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
204
+ alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
205
+ sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
206
+ sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
207
+ # select parameters corresponding to the currently considered timestep
208
+ a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
209
+ a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
210
+ sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
211
+ sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
212
+
213
+ # current prediction for x_0
214
+ if self.model.parameterization != "v":
215
+ pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
216
+ else:
217
+ pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)
218
+
219
+ if quantize_denoised:
220
+ pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
221
+
222
+ if dynamic_threshold is not None:
223
+ raise NotImplementedError()
224
+
225
+ # direction pointing to x_t
226
+ dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
227
+ noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
228
+ if noise_dropout > 0.:
229
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
230
+ x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
231
+ return x_prev, pred_x0
232
+
233
+ @torch.no_grad()
234
+ def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None,
235
+ unconditional_guidance_scale=1.0, unconditional_conditioning=None, callback=None):
236
+ timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
237
+ num_reference_steps = timesteps.shape[0]
238
+
239
+ assert t_enc <= num_reference_steps
240
+ num_steps = t_enc
241
+
242
+ if use_original_steps:
243
+ alphas_next = self.alphas_cumprod[:num_steps]
244
+ alphas = self.alphas_cumprod_prev[:num_steps]
245
+ else:
246
+ alphas_next = self.ddim_alphas[:num_steps]
247
+ alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])
248
+
249
+ x_next = x0
250
+ intermediates = []
251
+ inter_steps = []
252
+ for i in tqdm(range(num_steps), desc='Encoding Image'):
253
+ t = torch.full((x0.shape[0],), timesteps[i], device=self.model.device, dtype=torch.long)
254
+ if unconditional_guidance_scale == 1.:
255
+ noise_pred = self.model.apply_model(x_next, t, c)
256
+ else:
257
+ assert unconditional_conditioning is not None
258
+ e_t_uncond, noise_pred = torch.chunk(
259
+ self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)),
260
+ torch.cat((unconditional_conditioning, c))), 2)
261
+ noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond)
262
+
263
+ xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
264
+ weighted_noise_pred = alphas_next[i].sqrt() * (
265
+ (1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred
266
+ x_next = xt_weighted + weighted_noise_pred
267
+ if return_intermediates and i % (
268
+ num_steps // return_intermediates) == 0 and i < num_steps - 1:
269
+ intermediates.append(x_next)
270
+ inter_steps.append(i)
271
+ elif return_intermediates and i >= num_steps - 2:
272
+ intermediates.append(x_next)
273
+ inter_steps.append(i)
274
+ if callback: callback(i)
275
+
276
+ out = {'x_encoded': x_next, 'intermediate_steps': inter_steps}
277
+ if return_intermediates:
278
+ out.update({'intermediates': intermediates})
279
+ return x_next, out
280
+
281
+ @torch.no_grad()
282
+ def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
283
+ # fast, but does not allow for exact reconstruction
284
+ # t serves as an index to gather the correct alphas
285
+ if use_original_steps:
286
+ sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
287
+ sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
288
+ else:
289
+ sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
290
+ sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
291
+
292
+ if noise is None:
293
+ noise = torch.randn_like(x0)
294
+ return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
295
+ extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
296
+
297
+ @torch.no_grad()
298
+ def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
299
+ use_original_steps=False, callback=None):
300
+
301
+ timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
302
+ timesteps = timesteps[:t_start]
303
+
304
+ time_range = np.flip(timesteps)
305
+ total_steps = timesteps.shape[0]
306
+ print(f"Running DDIM Sampling with {total_steps} timesteps")
307
+
308
+ iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
309
+ x_dec = x_latent
310
+ for i, step in enumerate(iterator):
311
+ index = total_steps - i - 1
312
+ ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
313
+ x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
314
+ unconditional_guidance_scale=unconditional_guidance_scale,
315
+ unconditional_conditioning=unconditional_conditioning)
316
+ if callback: callback(i)
317
+ return x_dec
cldm/hack.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import einops
3
+
4
+ import ldm.modules.encoders.modules
5
+ import ldm.modules.attention
6
+
7
+ from transformers import logging
8
+ from ldm.modules.attention import default
9
+
10
+
11
+ def disable_verbosity():
12
+ logging.set_verbosity_error()
13
+ print('logging improved.')
14
+ return
15
+
16
+
17
+ def enable_sliced_attention():
18
+ ldm.modules.attention.CrossAttention.forward = _hacked_sliced_attentin_forward
19
+ print('Enabled sliced_attention.')
20
+ return
21
+
22
+
23
+ def hack_everything(clip_skip=0):
24
+ disable_verbosity()
25
+ ldm.modules.encoders.modules.FrozenCLIPEmbedder.forward = _hacked_clip_forward
26
+ ldm.modules.encoders.modules.FrozenCLIPEmbedder.clip_skip = clip_skip
27
+ print('Enabled clip hacks.')
28
+ return
29
+
30
+
31
+ # Written by Lvmin
32
+ def _hacked_clip_forward(self, text):
33
+ PAD = self.tokenizer.pad_token_id
34
+ EOS = self.tokenizer.eos_token_id
35
+ BOS = self.tokenizer.bos_token_id
36
+
37
+ def tokenize(t):
38
+ return self.tokenizer(t, truncation=False, add_special_tokens=False)["input_ids"]
39
+
40
+ def transformer_encode(t):
41
+ if self.clip_skip > 1:
42
+ rt = self.transformer(input_ids=t, output_hidden_states=True)
43
+ return self.transformer.text_model.final_layer_norm(rt.hidden_states[-self.clip_skip])
44
+ else:
45
+ return self.transformer(input_ids=t, output_hidden_states=False).last_hidden_state
46
+
47
+ def split(x):
48
+ return x[75 * 0: 75 * 1], x[75 * 1: 75 * 2], x[75 * 2: 75 * 3]
49
+
50
+ def pad(x, p, i):
51
+ return x[:i] if len(x) >= i else x + [p] * (i - len(x))
52
+
53
+ raw_tokens_list = tokenize(text)
54
+ tokens_list = []
55
+
56
+ for raw_tokens in raw_tokens_list:
57
+ raw_tokens_123 = split(raw_tokens)
58
+ raw_tokens_123 = [[BOS] + raw_tokens_i + [EOS] for raw_tokens_i in raw_tokens_123]
59
+ raw_tokens_123 = [pad(raw_tokens_i, PAD, 77) for raw_tokens_i in raw_tokens_123]
60
+ tokens_list.append(raw_tokens_123)
61
+
62
+ tokens_list = torch.IntTensor(tokens_list).to(self.device)
63
+
64
+ feed = einops.rearrange(tokens_list, 'b f i -> (b f) i')
65
+ y = transformer_encode(feed)
66
+ z = einops.rearrange(y, '(b f) i c -> b (f i) c', f=3)
67
+
68
+ return z
69
+
70
+
71
+ # Stolen from https://github.com/basujindal/stable-diffusion/blob/main/optimizedSD/splitAttention.py
72
+ def _hacked_sliced_attentin_forward(self, x, context=None, mask=None):
73
+ h = self.heads
74
+
75
+ q = self.to_q(x)
76
+ context = default(context, x)
77
+ k = self.to_k(context)
78
+ v = self.to_v(context)
79
+ del context, x
80
+
81
+ q, k, v = map(lambda t: einops.rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
82
+
83
+ limit = k.shape[0]
84
+ att_step = 1
85
+ q_chunks = list(torch.tensor_split(q, limit // att_step, dim=0))
86
+ k_chunks = list(torch.tensor_split(k, limit // att_step, dim=0))
87
+ v_chunks = list(torch.tensor_split(v, limit // att_step, dim=0))
88
+
89
+ q_chunks.reverse()
90
+ k_chunks.reverse()
91
+ v_chunks.reverse()
92
+ sim = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device)
93
+ del k, q, v
94
+ for i in range(0, limit, att_step):
95
+ q_buffer = q_chunks.pop()
96
+ k_buffer = k_chunks.pop()
97
+ v_buffer = v_chunks.pop()
98
+ sim_buffer = torch.einsum('b i d, b j d -> b i j', q_buffer, k_buffer) * self.scale
99
+
100
+ del k_buffer, q_buffer
101
+ # attention, what we cannot get enough of, by chunks
102
+
103
+ sim_buffer = sim_buffer.softmax(dim=-1)
104
+
105
+ sim_buffer = torch.einsum('b i j, b j d -> b i d', sim_buffer, v_buffer)
106
+ del v_buffer
107
+ sim[i:i + att_step, :, :] = sim_buffer
108
+
109
+ del sim_buffer
110
+ sim = einops.rearrange(sim, '(b h) n d -> b n (h d)', h=h)
111
+ return self.to_out(sim)
cldm/logger.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import numpy as np
4
+ import torch
5
+ import torchvision
6
+ from PIL import Image
7
+ from pytorch_lightning.callbacks import Callback
8
+ from pytorch_lightning.utilities.distributed import rank_zero_only
9
+
10
+
11
+ class ImageLogger(Callback):
12
+ def __init__(self, batch_frequency=2000, max_images=4, clamp=True, increase_log_steps=True,
13
+ rescale=True, disabled=False, log_on_batch_idx=False, log_first_step=False,
14
+ log_images_kwargs=None):
15
+ super().__init__()
16
+ self.rescale = rescale
17
+ self.batch_freq = batch_frequency
18
+ self.max_images = max_images
19
+ if not increase_log_steps:
20
+ self.log_steps = [self.batch_freq]
21
+ self.clamp = clamp
22
+ self.disabled = disabled
23
+ self.log_on_batch_idx = log_on_batch_idx
24
+ self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {}
25
+ self.log_first_step = log_first_step
26
+
27
+ @rank_zero_only
28
+ def log_local(self, save_dir, split, images, global_step, current_epoch, batch_idx):
29
+ root = os.path.join(save_dir, "image_log", split)
30
+ for k in images:
31
+ grid = torchvision.utils.make_grid(images[k], nrow=4)
32
+ if self.rescale:
33
+ grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
34
+ grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1)
35
+ grid = grid.numpy()
36
+ grid = (grid * 255).astype(np.uint8)
37
+ filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(k, global_step, current_epoch, batch_idx)
38
+ path = os.path.join(root, filename)
39
+ os.makedirs(os.path.split(path)[0], exist_ok=True)
40
+ Image.fromarray(grid).save(path)
41
+
42
+ def log_img(self, pl_module, batch, batch_idx, split="train"):
43
+ check_idx = batch_idx # if self.log_on_batch_idx else pl_module.global_step
44
+ if (self.check_frequency(check_idx) and # batch_idx % self.batch_freq == 0
45
+ hasattr(pl_module, "log_images") and
46
+ callable(pl_module.log_images) and
47
+ self.max_images > 0):
48
+ logger = type(pl_module.logger)
49
+
50
+ is_train = pl_module.training
51
+ if is_train:
52
+ pl_module.eval()
53
+
54
+ with torch.no_grad():
55
+ images = pl_module.log_images(batch, split=split, **self.log_images_kwargs)
56
+
57
+ for k in images:
58
+ N = min(images[k].shape[0], self.max_images)
59
+ images[k] = images[k][:N]
60
+ if isinstance(images[k], torch.Tensor):
61
+ images[k] = images[k].detach().cpu()
62
+ if self.clamp:
63
+ images[k] = torch.clamp(images[k], -1., 1.)
64
+
65
+ self.log_local(pl_module.logger.save_dir, split, images,
66
+ pl_module.global_step, pl_module.current_epoch, batch_idx)
67
+
68
+ if is_train:
69
+ pl_module.train()
70
+
71
+ def check_frequency(self, check_idx):
72
+ return check_idx % self.batch_freq == 0
73
+
74
+ def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
75
+ if not self.disabled:
76
+ self.log_img(pl_module, batch, batch_idx, split="train")
cldm/model.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+
4
+ from omegaconf import OmegaConf
5
+ from ldm.util import instantiate_from_config
6
+
7
+
8
+ def get_state_dict(d):
9
+ return d.get('state_dict', d)
10
+
11
+
12
+ def load_state_dict(ckpt_path, location='cpu'):
13
+ _, extension = os.path.splitext(ckpt_path)
14
+ if extension.lower() == ".safetensors":
15
+ import safetensors.torch
16
+ state_dict = safetensors.torch.load_file(ckpt_path, device=location)
17
+ else:
18
+ state_dict = get_state_dict(torch.load(ckpt_path, map_location=torch.device(location)))
19
+ state_dict = get_state_dict(state_dict)
20
+ print(f'Loaded state_dict from [{ckpt_path}]')
21
+ return state_dict
22
+
23
+
24
+ def create_model(config_path):
25
+ config = OmegaConf.load(config_path)
26
+ model = instantiate_from_config(config.model).cpu()
27
+ print(f'Loaded model config from [{config_path}]')
28
+ return model