LivePortrait2 / readme.md
multimodalart's picture
Upload folder using huggingface_hub
a891a57 verified
|
raw
history blame
6.5 kB
<h1 align="center">LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control</h1>
<div align='center'>
<a href='https://github.com/cleardusk' target='_blank'><strong>Jianzhu Guo</strong></a><sup> 1†</sup>&emsp;
<a href='https://github.com/KwaiVGI' target='_blank'><strong>Dingyun Zhang</strong></a><sup> 1,2</sup>&emsp;
<a href='https://github.com/KwaiVGI' target='_blank'><strong>Xiaoqiang Liu</strong></a><sup> 1</sup>&emsp;
<a href='https://github.com/KwaiVGI' target='_blank'><strong>Zhizhou Zhong</strong></a><sup> 1,3</sup>&emsp;
<a href='https://scholar.google.com.hk/citations?user=_8k1ubAAAAAJ' target='_blank'><strong>Yuan Zhang</strong></a><sup> 1</sup>&emsp;
</div>
<div align='center'>
<a href='https://scholar.google.com/citations?user=P6MraaYAAAAJ' target='_blank'><strong>Pengfei Wan</strong></a><sup> 1</sup>&emsp;
<a href='https://openreview.net/profile?id=~Di_ZHANG3' target='_blank'><strong>Di Zhang</strong></a><sup> 1</sup>&emsp;
</div>
<div align='center'>
<sup>1 </sup>Kuaishou Technology&emsp; <sup>2 </sup>University of Science and Technology of China&emsp; <sup>3 </sup>Fudan University&emsp;
</div>
<br>
<div align="center">
<!-- <a href='LICENSE'><img src='https://img.shields.io/badge/license-MIT-yellow'></a> -->
<a href='https://liveportrait.github.io'><img src='https://img.shields.io/badge/Project-Homepage-green'></a>
<a href='https://arxiv.org/pdf/2407.03168'><img src='https://img.shields.io/badge/Paper-arXiv-red'></a>
</div>
<br>
<p align="center">
<img src="./assets/docs/showcase2.gif" alt="showcase">
<br>
πŸ”₯ For more results, visit our <a href="https://liveportrait.github.io/"><strong>homepage</strong></a> πŸ”₯
</p>
## πŸ”₯ Updates
- **`2024/07/04`**: πŸ”₯ We released the initial version of the inference code and models. Continuous updates, stay tuned!
- **`2024/07/04`**: 😊 We released the [homepage](https://liveportrait.github.io) and technical report on [arXiv](https://arxiv.org/pdf/2407.03168).
## Introduction
This repo, named **LivePortrait**, contains the official PyTorch implementation of our paper [LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control](https://arxiv.org/pdf/2407.03168).
We are actively updating and improving this repository. If you find any bugs or have suggestions, welcome to raise issues or submit pull requests (PR) πŸ’–.
## πŸ”₯ Getting Started
### 1. Clone the code and prepare the environment
```bash
git clone https://github.com/KwaiVGI/LivePortrait
cd LivePortrait
# create env using conda
conda create -n LivePortrait python==3.9.18
conda activate LivePortrait
# install dependencies with pip
pip install -r requirements.txt
```
### 2. Download pretrained weights
Download our pretrained LivePortrait weights and face detection models of InsightFace from [Google Drive](https://drive.google.com/drive/folders/1UtKgzKjFAOmZkhNK-OYT0caJ_w2XAnib) or [Baidu Yun](https://pan.baidu.com/s/1MGctWmNla_vZxDbEp2Dtzw?pwd=z5cn). We have packed all weights in one directory 😊. Unzip and place them in `./pretrained_weights` ensuring the directory structure is as follows:
```text
pretrained_weights
β”œβ”€β”€ insightface
β”‚ └── models
β”‚ └── buffalo_l
β”‚ β”œβ”€β”€ 2d106det.onnx
β”‚ └── det_10g.onnx
└── liveportrait
β”œβ”€β”€ base_models
β”‚ β”œβ”€β”€ appearance_feature_extractor.pth
β”‚ β”œβ”€β”€ motion_extractor.pth
β”‚ β”œβ”€β”€ spade_generator.pth
β”‚ └── warping_module.pth
β”œβ”€β”€ landmark.onnx
└── retargeting_models
└── stitching_retargeting_module.pth
```
### 3. Inference πŸš€
```bash
python inference.py
```
If the script runs successfully, you will get an output mp4 file named `animations/s6--d0_concat.mp4`. This file includes the following results: driving video, input image, and generated result.
<p align="center">
<img src="./assets/docs/inference.gif" alt="image">
</p>
Or, you can change the input by specifying the `-s` and `-d` arguments:
```bash
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d0.mp4
# or disable pasting back
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d0.mp4 --no_flag_pasteback
# more options to see
python inference.py -h
```
**More interesting results can be found in our [Homepage](https://liveportrait.github.io)** 😊
### 4. Gradio interface
We also provide a Gradio interface for a better experience, just run by:
```bash
python app.py
```
### 5. Inference speed evaluation πŸš€πŸš€πŸš€
We have also provided a script to evaluate the inference speed of each module:
```bash
python speed.py
```
Below are the results of inferring one frame on an RTX 4090 GPU using the native PyTorch framework with `torch.compile`:
| Model | Parameters(M) | Model Size(MB) | Inference(ms) |
|-----------------------------------|:-------------:|:--------------:|:-------------:|
| Appearance Feature Extractor | 0.84 | 3.3 | 0.82 |
| Motion Extractor | 28.12 | 108 | 0.84 |
| Spade Generator | 55.37 | 212 | 7.59 |
| Warping Module | 45.53 | 174 | 5.21 |
| Stitching and Retargeting Modules| 0.23 | 2.3 | 0.31 |
*Note: the listed values of Stitching and Retargeting Modules represent the combined parameter counts and the total sequential inference time of three MLP networks.*
## Acknowledgements
We would like to thank the contributors of [FOMM](https://github.com/AliaksandrSiarohin/first-order-model), [Open Facevid2vid](https://github.com/zhanglonghao1992/One-Shot_Free-View_Neural_Talking_Head_Synthesis), [SPADE](https://github.com/NVlabs/SPADE), [InsightFace](https://github.com/deepinsight/insightface) repositories, for their open research and contributions.
## Citation πŸ’–
If you find LivePortrait useful for your research, welcome to 🌟 this repo and cite our work using the following BibTeX:
```bibtex
@article{guo2024live,
title = {LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control},
author = {Jianzhu Guo and Dingyun Zhang and Xiaoqiang Liu and Zhizhou Zhong and Yuan Zhang and Pengfei Wan and Di Zhang},
year = {2024},
journal = {arXiv preprint:2407.03168},
}
```