Spaces:
Sleeping
Sleeping
#!/usr/bin/env python3 | |
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Simple classifier example based on Hugging Face JAX BERT model.""" | |
import logging | |
import numpy as np | |
from transformers import BertTokenizer, FlaxBertModel # pytype: disable=import-error | |
from pytriton.decorators import batch | |
from pytriton.model_config import ModelConfig, Tensor | |
from pytriton.triton import Triton | |
logger = logging.getLogger("examples.huggingface_bert_jax.server") | |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(name)s: %(message)s") | |
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") | |
model = FlaxBertModel.from_pretrained("bert-base-uncased") | |
def _infer_fn(**inputs: np.ndarray): | |
(sequence_batch,) = inputs.values() | |
# need to convert dtype=object to bytes first | |
# end decode unicode bytes | |
sequence_batch = np.char.decode(sequence_batch.astype("bytes"), "utf-8") | |
last_hidden_states = [] | |
for sequence_item in sequence_batch: | |
tokenized_sequence = tokenizer(sequence_item.item(), return_tensors="jax") | |
results = model(**tokenized_sequence) | |
last_hidden_states.append(results.last_hidden_state) | |
last_hidden_states = np.array(last_hidden_states, dtype=np.float32) | |
return [last_hidden_states] | |
with Triton() as triton: | |
logger.info("Loading BERT model.") | |
triton.bind( | |
model_name="BERT", | |
infer_func=_infer_fn, | |
inputs=[ | |
Tensor(name="sequence", dtype=np.bytes_, shape=(1,)), | |
], | |
outputs=[ | |
Tensor( | |
name="last_hidden_state", | |
dtype=np.float32, | |
shape=(-1, -1, -1), | |
), | |
], | |
config=ModelConfig(max_batch_size=16), | |
strict=True, | |
) | |
logger.info("Serving inference") | |
triton.serve() | |