Spaces:
Sleeping
Sleeping
LivePortrait2
/
stf
/stf-api-alternative
/pytriton
/examples
/huggingface_stable_diffusion
/server.py
#!/usr/bin/env python3 | |
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Server for Stable Diffusion 1.5.""" | |
import argparse | |
import base64 | |
import io | |
import logging | |
import numpy as np | |
import torch # pytype: disable=import-error | |
from diffusers import StableDiffusionPipeline # pytype: disable=import-error | |
from pytriton.decorators import batch, first_value, group_by_values | |
from pytriton.model_config import DynamicBatcher, ModelConfig, Tensor | |
from pytriton.triton import Triton, TritonConfig | |
LOGGER = logging.getLogger("examples.huggingface_stable_diffusion.server") | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
IMAGE_FORMAT = "JPEG" | |
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) | |
pipe = pipe.to(DEVICE) | |
def _encode_image_to_base64(image): | |
raw_bytes = io.BytesIO() | |
image.save(raw_bytes, IMAGE_FORMAT) | |
raw_bytes.seek(0) # return to the start of the buffer | |
return base64.b64encode(raw_bytes.read()) | |
def _infer_fn( | |
prompt: np.ndarray, | |
img_size: np.int64, | |
): | |
prompts = [np.char.decode(p.astype("bytes"), "utf-8").item() for p in prompt] | |
LOGGER.debug(f"Prompts: {prompts}") | |
LOGGER.debug(f"Image Size: {img_size}x{img_size}") | |
outputs = [] | |
for idx, image in enumerate( | |
pipe( | |
prompt=prompts, | |
height=img_size, | |
width=img_size, | |
).images | |
): | |
raw_data = _encode_image_to_base64(image) | |
outputs.append([raw_data]) | |
LOGGER.debug(f"Generated result for prompt `{prompts[idx]}` with size {len(raw_data)}") | |
LOGGER.debug(f"Prepared batch response of size: {len(outputs)}") | |
return {"image": np.array(outputs)} | |
def _parse_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--verbose", | |
"-v", | |
action="store_true", | |
help="Enable verbose logging in debug mode.", | |
) | |
return parser.parse_args() | |
def main(): | |
"""Initialize server with model.""" | |
args = _parse_args() | |
log_level = logging.DEBUG if args.verbose else logging.INFO | |
logging.basicConfig(level=log_level, format="%(asctime)s - %(levelname)s - %(name)s: %(message)s") | |
log_verbose = 1 if args.verbose else 0 | |
config = TritonConfig(exit_on_error=True, log_verbose=log_verbose) | |
with Triton(config=config) as triton: | |
LOGGER.info("Loading the pipeline") | |
triton.bind( | |
model_name="StableDiffusion_1_5", | |
infer_func=_infer_fn, | |
inputs=[ | |
Tensor(name="prompt", dtype=np.bytes_, shape=(1,)), | |
Tensor(name="img_size", dtype=np.int64, shape=(1,)), | |
], | |
outputs=[ | |
Tensor(name="image", dtype=np.bytes_, shape=(1,)), | |
], | |
config=ModelConfig( | |
max_batch_size=4, | |
batcher=DynamicBatcher( | |
max_queue_delay_microseconds=100, | |
), | |
), | |
strict=True, | |
) | |
triton.serve() | |
if __name__ == "__main__": | |
main() | |