Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python3 | |
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Simple classifier example based on Hugging Face Pytorch BART model.""" | |
import logging | |
import numpy as np | |
from transformers import pipeline # pytype: disable=import-error | |
from pytriton.decorators import batch | |
from pytriton.model_config import ModelConfig, Tensor | |
from pytriton.triton import Triton | |
logger = logging.getLogger("examples.perf_analyzer.server") | |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(name)s: %(message)s") | |
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli", device=0) | |
def _infer_fn(**inputs: np.ndarray): | |
sequences_batch, labels_batch = inputs.values() | |
# need to convert dtype=object to bytes first | |
# end decode unicode bytes | |
sequences_batch = np.char.decode(sequences_batch.astype("bytes"), "utf-8") | |
labels_batch = np.char.decode(labels_batch.astype("bytes"), "utf-8") | |
scores = [] | |
for sequence, labels in zip(sequences_batch, labels_batch): | |
classification_result = classifier(sequence.item(), labels.tolist()) | |
scores.append(classification_result["scores"]) | |
scores_batch = np.array(scores, dtype=np.float32) | |
return {"scores": scores_batch} | |
with Triton() as triton: | |
logger.info("Loading BART model.") | |
triton.bind( | |
model_name="BART", | |
infer_func=_infer_fn, | |
inputs=[ | |
Tensor(name="sequence", dtype=np.bytes_, shape=(1,)), | |
Tensor(name="labels", dtype=np.bytes_, shape=(-1,)), | |
], | |
outputs=[ | |
Tensor(name="scores", dtype=np.float32, shape=(-1,)), | |
], | |
config=ModelConfig(max_batch_size=8), | |
strict=True, | |
) | |
logger.info("Serving inference") | |
triton.serve() | |