File size: 8,252 Bytes
46ffa30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import json
import os
import time
from random import randint

import psutil
import streamlit as st
import torch
from transformers import (
    AutoModelForCausalLM,
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
    pipeline,
    set_seed,
)

from generator import GeneratorFactory

device = torch.cuda.device_count() - 1

TRANSLATION_NL_TO_EN = "translation_en_to_nl"

GENERATOR_LIST = [
    {
        "model_name": "yhavinga/longt5-local-eff-large-nl8-voc8k-ddwn-512beta-512l-nedd-256ccmatrix-en-nl",
        "desc": "longT5 large nl8 256cc/512beta/512l en->nl",
        "task": TRANSLATION_NL_TO_EN,
    },
    {
        "model_name": "yhavinga/longt5-local-eff-large-nl8-voc8k-ddwn-512beta-512-nedd-en-nl",
        "desc": "longT5 large nl8 512beta/512l en->nl",
        "task": TRANSLATION_NL_TO_EN,
    },
    {
        "model_name": "yhavinga/t5-small-24L-ccmatrix-multi",
        "desc": "T5 small nl24 ccmatrix en->nl",
        "task": TRANSLATION_NL_TO_EN,
    },
]


def main():
    st.set_page_config(  # Alternate names: setup_page, page, layout
        page_title="Babel",  # String or None. Strings get appended with "β€’ Streamlit".
        layout="wide",  # Can be "centered" or "wide". In the future also "dashboard", etc.
        initial_sidebar_state="expanded",  # Can be "auto", "expanded", "collapsed"
        page_icon="πŸ“š",  # String, anything supported by st.image, or None.
    )

    if "generators" not in st.session_state:
        st.session_state["generators"] = GeneratorFactory(GENERATOR_LIST)

    generators = st.session_state["generators"]

    with open("style.css") as f:
        st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)

    st.sidebar.image("babel.png", width=200)
    st.sidebar.markdown(
        """# Babel
    Vertaal van en naar Engels"""
    )
    model_desc = st.sidebar.selectbox("Model", generators.gpt_descs(), index=1)
    st.sidebar.title("Parameters:")
    if "prompt_box" not in st.session_state:
        # Text is from https://www.gutenberg.org/files/35091/35091-h/35091-h.html
        st.session_state[
            "prompt_box"
        ] = """It was a wet, gusty night and I had a lonely walk home. By taking the river road, though I hated it, I saved two miles, so I sloshed ahead trying not to think at all. Through the barbed wire fence I could see the racing river. Its black swollen body writhed along with extraordinary swiftness, breathlessly silent, only occasionally making a swishing ripple. I did not enjoy looking at it. I was somehow afraid.

And there, at the end of the river road where I swerved off, a figure stood waiting for me, motionless and enigmatic. I had to meet it or turn back.

It was a quite young girl, unknown to me, with a hood over her head, and with large unhappy eyes.

β€œMy father is very ill,” she said without a word of introduction. β€œThe nurse is frightened. Could you come in and help?”"""
    st.session_state["text"] = st.text_area(
        "Enter text", st.session_state.prompt_box, height=300
    )
    max_length = st.sidebar.number_input(
        "Lengte van de tekst",
        value=200,
        max_value=4096,
    )
    no_repeat_ngram_size = st.sidebar.number_input(
        "No-repeat NGram size", min_value=1, max_value=5, value=3
    )
    repetition_penalty = st.sidebar.number_input(
        "Repetition penalty", min_value=0.0, max_value=5.0, value=1.2, step=0.1
    )
    num_return_sequences = st.sidebar.number_input(
        "Num return sequences", min_value=1, max_value=5, value=1
    )
    seed_placeholder = st.sidebar.empty()
    if "seed" not in st.session_state:
        print(f"Session state does not contain seed")
        st.session_state["seed"] = 4162549114
        print(f"Seed is set to: {st.session_state['seed']}")

    seed = seed_placeholder.number_input(
        "Seed", min_value=0, max_value=2**32 - 1, value=st.session_state["seed"]
    )

    def set_random_seed():
        st.session_state["seed"] = randint(0, 2**32 - 1)
        seed = seed_placeholder.number_input(
            "Seed", min_value=0, max_value=2**32 - 1, value=st.session_state["seed"]
        )
        print(f"New random seed set to: {seed}")

    if st.button("Set new random seed"):
        set_random_seed()

    if sampling_mode := st.sidebar.selectbox(
        "select a Mode", index=0, options=["Top-k Sampling", "Beam Search"]
    ):
        if sampling_mode == "Beam Search":
            num_beams = st.sidebar.number_input(
                "Num beams", min_value=1, max_value=10, value=4
            )
            length_penalty = st.sidebar.number_input(
                "Length penalty", min_value=0.0, max_value=2.0, value=1.0, step=0.1
            )
            params = {
                "max_length": max_length,
                "no_repeat_ngram_size": no_repeat_ngram_size,
                "repetition_penalty": repetition_penalty,
                "num_return_sequences": num_return_sequences,
                "num_beams": num_beams,
                "early_stopping": True,
                "length_penalty": length_penalty,
            }
        else:
            top_k = st.sidebar.number_input(
                "Top K", min_value=0, max_value=100, value=50
            )
            top_p = st.sidebar.number_input(
                "Top P", min_value=0.0, max_value=1.0, value=0.95, step=0.05
            )
            temperature = st.sidebar.number_input(
                "Temperature", min_value=0.05, max_value=1.0, value=1.0, step=0.05
            )
            params = {
                "max_length": max_length,
                "no_repeat_ngram_size": no_repeat_ngram_size,
                "repetition_penalty": repetition_penalty,
                "num_return_sequences": num_return_sequences,
                "do_sample": True,
                "top_k": top_k,
                "top_p": top_p,
                "temperature": temperature,
            }

    st.sidebar.markdown(
        """For an explanation of the parameters, head over to the [Huggingface blog post about text generation](https://huggingface.co/blog/how-to-generate)
and the [Huggingface text generation interface doc](https://huggingface.co/transformers/main_classes/model.html?highlight=generate#transformers.generation_utils.GenerationMixin.generate).
"""
    )

    def estimate_time():
        """Estimate the time it takes to generate the text."""
        estimate = max_length / 18
        if device == -1:
            ## cpu
            estimate = estimate * (1 + 0.7 * (num_return_sequences - 1))
            if sampling_mode == "Beam Search":
                estimate = estimate * (1.1 + 0.3 * (num_beams - 1))
        else:
            ## gpu
            estimate = estimate * (1 + 0.1 * (num_return_sequences - 1))
            estimate = 0.5 + estimate / 5
            if sampling_mode == "Beam Search":
                estimate = estimate * (1.0 + 0.1 * (num_beams - 1))
        return int(estimate)

    if st.button("Run"):
        estimate = estimate_time()

        with st.spinner(
            text=f"Please wait ~ {estimate} second{'s' if estimate != 1 else ''} while getting results ..."
        ):
            memory = psutil.virtual_memory()

            for generator in generators:
                st.subheader(f"Result from {generator}")
                set_seed(seed)
                time_start = time.time()
                result = generator.generate(text=st.session_state.text, **params)
                time_end = time.time()
                time_diff = time_end - time_start

                for text in result:
                    st.write(text.replace("\n", "  \n"))
                    st.write(f"--- generated in {time_diff:.2f} seconds ---")

            info = f"""
            ---
            *Memory: {memory.total / 10**9:.2f}GB, used: {memory.percent}%, available: {memory.available / 10**9:.2f}GB*
            *Text generated using seed {seed}*
            """
            st.write(info)

            params["seed"] = seed
            params["prompt"] = st.session_state.text
            params["model"] = generator.model_name
            params_text = json.dumps(params)
            print(params_text)
            st.json(params_text)


if __name__ == "__main__":
    main()