Splend1dchan's picture
Update app.py
58f6e39 verified
raw
history blame
10.1 kB
# Copyright (c) 2025 MediaTek Reserch Inc (authors: Chan-Jan Hsu)
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Liu Yue)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append('{}/third_party/Matcha-TTS'.format(ROOT_DIR))
import argparse
import gradio as gr
import numpy as np
import torch
torch.set_num_threads(1)
import torchaudio
import random
import librosa
from transformers import pipeline
import subprocess
from scipy.signal import resample
import logging
logging.getLogger('matplotlib').setLevel(logging.WARNING)
from cosyvoice.cli.cosyvoice import CosyVoice
from cosyvoice.utils.file_utils import load_wav, speed_change
#logging.basicConfig(level=logging.DEBUG,
# format='%(asctime)s %(levelname)s %(message)s')
def generate_seed():
seed = random.randint(1, 100000000)
return {
"__type__": "update",
"value": seed
}
def set_all_random_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
max_val = 0.8
def postprocess(speech, top_db=60, hop_length=220, win_length=440):
speech, _ = librosa.effects.trim(
speech, top_db=top_db,
frame_length=win_length,
hop_length=hop_length
)
if speech.abs().max() > max_val:
speech = speech / speech.abs().max() * max_val
speech = torch.concat([speech, torch.zeros(1, int(target_sr * 0.2))], dim=1)
return speech
def generate_audio(tts_text, prompt_text, prompt_wav_upload, prompt_wav_record, seed, select_which):
if select_which == "上傳檔案" and prompt_wav_upload is not None:
prompt_wav = prompt_wav_upload
elif select_which == "麥克風" and prompt_wav_record is not None:
prompt_wav = prompt_wav_record
else:
prompt_wav = None
# if instruct mode, please make sure that model is iic/CosyVoice-300M-Instruct and not cross_lingual mode
prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr))
set_all_random_seed(seed)
output = cosyvoice.inference_zero_shot(tts_text, prompt_text, prompt_speech_16k)
speed_factor = 1
if speed_factor != 1.0:
#try:
#audio_data, sample_rate = speed_change(output["tts_speech"], target_sr, str(speed_factor))
#audio_data = audio_data.numpy().flatten()
new_length = int(len(output['tts_speech']) / speed_factor)
audio_data = resample(output['tts_speech'], new_length)
# except Exception as e:
# print(f"Failed to change speed of audio: \n{e}")
else:
audio_data = output['tts_speech'].numpy().flatten()
return (target_sr, audio_data)
def generate_text(prompt_wav_upload, prompt_wav_record, select_which):
# Determine which input to use based on the selection in select_which
if select_which == "上傳檔案" and prompt_wav_upload is not None:
prompt_wav = prompt_wav_upload
LAST_UPLOADED = "upload"
elif select_which == "麥克風" and prompt_wav_record is not None:
prompt_wav = prompt_wav_record
LAST_UPLOADED = "record"
else:
prompt_wav = None
LAST_UPLOADED = None
print(select_which)
# Process with ASR pipeline
if prompt_wav:
results = asr_pipeline(prompt_wav)
return results['text']
return "No valid input detected."
# LAST_UPLOADED = ""
# def switch_selected(select_which):
# # Check the file type (assuming WAV file)
# if select_which == "上傳檔案" and prompt_wav_upload is not None:
# prompt_wav = prompt_wav_upload
# LAST_UPLOADED = "upload"
# elif select_which == "麥克風" and prompt_wav_record is not None:
# prompt_wav = prompt_wav_record
# return "麥克風"
def demo_get_audio(tts_text):
sample_wav = 'sample.wav'
speech, sample_rate = torchaudio.load(sample_wav)
return sample_rate, speech
def main():
with gr.Blocks(title="BreezyVoice 語音合成系統", theme="default") as demo:
# Title and About section at the top
gr.Markdown("# BreezyVoice 語音合成系統")
gr.Markdown(
"""### 僅需5秒語音樣本,就可輸出擬真人聲。"""
)
with gr.Row():
gr.Image(value="https://huggingface.co/spaces/Splend1dchan/BreezyVoice-Playground/resolve/main/flowchart.png", interactive=False, scale=3)
gr.Markdown(
"""#### 此沙盒使用 Huggingface CPU,請預期大於200 秒的推理時間,您可以考慮以下方法加速:
1. **強烈建議**複製這個 Space(Duplicate this space),以分散流量!
2. 複製至本地GPU執行(請參考[指南](https://huggingface.co/docs/hub/en/spaces-overview))或使用[kaggle](https://www.kaggle.com/code/a24998667/breezyvoice-playground)
3. 複製至本地CPU執行(請參考[指南](https://huggingface.co/docs/hub/en/spaces-overview))
為了加快推理速度,g2pw注音標註並未被啟動。
免責聲明:此沙盒在一次性容器地端執行,關閉後檔案將遭到刪除。此沙盒不屬於聯發創新基地,聯發創新基地無法獲得任何使用者輸入。"""
)
# All content arranged in a single column
with gr.Column():
# Configuration Section
# Grouping prompt audio inputs and auto speech recognition in one block using Markdown
gr.Markdown("### 步驟 1. 音訊樣本輸入 & 音訊樣本文本輸入")
gr.Markdown("選擇prompt音訊檔案或錄製prompt音訊 (5~15秒),並手動校對自動產生的音訊樣本文本。")
prompt_wav_upload = gr.Audio(
sources='upload',
type='filepath',
label='選擇prompt音訊檔案(確保取樣率不低於16khz)'
)
prompt_wav_record = gr.Audio(
sources='microphone',
type='filepath',
label='錄製prompt音訊檔案'
)
with gr.Blocks():
select_which = gr.Radio(["上傳檔案", "麥克風"], label="音訊來源", interactive=True )
with gr.Blocks():
prompt_text = gr.Textbox(
label="音訊樣本文本輸入(此欄位應與音檔內容完全相同)",
lines=2,
placeholder="音訊樣本文本"
)
# Automatic speech recognition when either prompt audio input changes
def a(X):
return "上傳檔案"
prompt_wav_upload.change(
fn=a,#lambda file: "上傳檔案",
inputs=[prompt_wav_upload],
outputs=select_which
)
prompt_wav_record.change(
fn=lambda recording: "麥克風",
inputs=[prompt_wav_record],
outputs=select_which
)
select_which.change(
fn=generate_text,
inputs=[prompt_wav_upload, prompt_wav_record, select_which],
outputs=prompt_text
)
# select_which.change(
# fn=switch_selected,
# inputs=[select_which],
# outputs= None
# )
# Input Section: Synthesis Text
gr.Markdown("### 步驟 2.合成文本輸入")
tts_text = gr.Textbox(
label="輸入想要合成的文本",
lines=2,
placeholder="請輸入想要合成的文本...",
value="你好,歡迎光臨"
)
# Output Section
gr.Markdown("### 步驟 3. 合成音訊")
# Generation button for audio synthesis (triggered manually)
with gr.Accordion("進階設定", open=False):
seed = gr.Number(value=0, label="隨機推理種子")
#seed_button = gr.Button("隨機")
seed_button = gr.Button(value="\U0001F3B2生成隨機推理種子\U0001F3B2")
speed_factor = 1
# speed_factor = gr.Slider(
# minimum=0.25,
# maximum=4,
# step=0.05,
# label="語速",
# value=1.0,
# interactive=True
# )
generate_button = gr.Button("生成音訊")
audio_output = gr.Audio(label="合成音訊")
# Set up callbacks for seed generation and audio synthesis
seed_button.click(fn=generate_seed, inputs=[], outputs=seed)
generate_button.click(
fn=generate_audio,
inputs=[tts_text, prompt_text, prompt_wav_upload, prompt_wav_record, seed, select_which],
outputs=audio_output
)
demo.queue(max_size=10, default_concurrency_limit=1)
demo.launch()
if __name__ == '__main__':
cosyvoice = CosyVoice('Splend1dchan/BreezyVoice')
asr_pipeline = pipeline(
"automatic-speech-recognition",
model="openai/whisper-tiny",
tokenizer="openai/whisper-tiny",
device=0 # Use GPU (if available); set to -1 for CPU
)
sft_spk = cosyvoice.list_avaliable_spks()
prompt_sr, target_sr = 16000, 22050
default_data = np.zeros(target_sr)
main()