Spaces:
Sleeping
Sleeping
import pickle | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
from sklearn.metrics import confusion_matrix | |
import torch | |
def extract_hidden_state(input_text, tokenizer, language_model): | |
tokens = tokenizer(input_text, padding=True, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = language_model(**tokens) | |
return outputs.last_hidden_state[:,0].numpy() | |
def serialize_data(data, output_path:str): | |
with open(output_path, "wb") as f: | |
pickle.dump(data, f) | |
def load_data(input_path:str): | |
with open(input_path, "rb") as f: | |
return pickle.load(f) | |
def plot_confusion_matrix(y_true, y_preds): | |
labels = sorted(set(y_true.tolist() + y_preds.tolist())) | |
cm = confusion_matrix(y_true, y_preds) | |
plt.figure(figsize=(12, 10)) | |
sns.heatmap(cm, annot=True, cmap="Blues", | |
xticklabels=labels, yticklabels=labels) | |
plt.xlabel('Predicted Label') | |
plt.ylabel('True Label') | |
plt.title('Confusion Matrix') | |
plt.show() |