zamal commited on
Commit
b78d808
·
verified ·
1 Parent(s): e3ac72c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +66 -44
app.py CHANGED
@@ -3,6 +3,8 @@ import torch
3
  from transformers import AutoModelForCausalLM
4
  from deepseek_vl.models import VLChatProcessor, MultiModalityCausalLM
5
  from deepseek_vl.utils.io import load_pil_images
 
 
6
  import spaces # Import spaces for ZeroGPU support
7
 
8
  # Load the model and processor
@@ -10,57 +12,77 @@ model_path = "deepseek-ai/deepseek-vl-1.3b-chat"
10
  vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
11
  tokenizer = vl_chat_processor.tokenizer
12
 
13
- # Define the function for image description
14
  @spaces.GPU # Ensures GPU allocation for this function
15
- def describe_image(image):
16
- # Define the conversation
17
- conversation = [
18
- {
19
- "role": "User",
20
- "content": "<image_placeholder>Describe this image in great detail.",
21
- "images": [image]
22
- },
23
- {
24
- "role": "Assistant",
25
- "content": ""
26
- }
27
- ]
28
-
29
- # Load image and process inputs
30
- pil_images = load_pil_images(conversation)
31
- prepare_inputs = vl_chat_processor(
32
- conversations=conversation,
33
- images=pil_images,
34
- force_batchify=True
35
- ).to('cuda')
36
-
37
- # Run the image encoder to get embeddings
38
- vl_gpt = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True).to(torch.bfloat16).cuda().eval()
39
- inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
40
-
41
- # Generate response from the model
42
- outputs = vl_gpt.language_model.generate(
43
- inputs_embeds=inputs_embeds,
44
- attention_mask=prepare_inputs.attention_mask,
45
- pad_token_id=tokenizer.eos_token_id,
46
- bos_token_id=tokenizer.bos_token_id,
47
- eos_token_id=tokenizer.eos_token_id,
48
- max_new_tokens=512,
49
- do_sample=False,
50
- use_cache=True
51
- )
52
-
53
- # Decode the generated tokens into text
54
- answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
55
- return answer
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
 
57
  # Gradio interface
58
  def gradio_app():
59
  with gr.Blocks() as demo:
60
- gr.Markdown("# Image Description with DeepSeek VL 1.3b\n### Upload an image to receive a detailed description.")
61
 
62
  with gr.Row():
63
  image_input = gr.Image(type="pil", label="Upload an Image")
 
 
 
 
 
64
 
65
  output_text = gr.Textbox(label="Image Description", interactive=False)
66
 
@@ -68,7 +90,7 @@ def gradio_app():
68
 
69
  submit_btn.click(
70
  fn=describe_image,
71
- inputs=[image_input],
72
  outputs=output_text
73
  )
74
 
 
3
  from transformers import AutoModelForCausalLM
4
  from deepseek_vl.models import VLChatProcessor, MultiModalityCausalLM
5
  from deepseek_vl.utils.io import load_pil_images
6
+ from io import BytesIO
7
+ from PIL import Image
8
  import spaces # Import spaces for ZeroGPU support
9
 
10
  # Load the model and processor
 
12
  vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
13
  tokenizer = vl_chat_processor.tokenizer
14
 
15
+ # Define the function for image description with ZeroGPU support
16
  @spaces.GPU # Ensures GPU allocation for this function
17
+ def describe_image(image, user_question="Describe each stage of this image."):
18
+ try:
19
+ # Convert the PIL Image to a BytesIO object for compatibility
20
+ image_byte_arr = BytesIO()
21
+ image.save(image_byte_arr, format="PNG") # Save image in PNG format
22
+ image_byte_arr.seek(0) # Move pointer to the start
23
+
24
+ # Define the conversation, using the user's question
25
+ conversation = [
26
+ {
27
+ "role": "User",
28
+ "content": f"<image_placeholder>{user_question}",
29
+ "images": [image_byte_arr] # Pass the image byte array instead of an object
30
+ },
31
+ {
32
+ "role": "Assistant",
33
+ "content": ""
34
+ }
35
+ ]
36
+
37
+ # Convert image byte array back to a PIL image for processing
38
+ pil_images = [Image.open(BytesIO(image_byte_arr.read()))] # Convert byte back to PIL Image
39
+ image_byte_arr.seek(0) # Reset the byte stream again for reuse
40
+
41
+ # Load images and prepare the inputs
42
+ prepare_inputs = vl_chat_processor(
43
+ conversations=conversation,
44
+ images=pil_images,
45
+ force_batchify=True
46
+ ).to('cuda')
47
+
48
+ # Load and prepare the model
49
+ vl_gpt = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True).to(torch.bfloat16).cuda().eval()
50
+
51
+ # Generate embeddings from the image input
52
+ inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
53
+
54
+ # Generate the model's response
55
+ outputs = vl_gpt.language_model.generate(
56
+ inputs_embeds=inputs_embeds,
57
+ attention_mask=prepare_inputs.attention_mask,
58
+ pad_token_id=tokenizer.eos_token_id,
59
+ bos_token_id=tokenizer.bos_token_id,
60
+ eos_token_id=tokenizer.eos_token_id,
61
+ max_new_tokens=512,
62
+ do_sample=False,
63
+ use_cache=True
64
+ )
65
+
66
+ # Decode the generated tokens into text
67
+ answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
68
+ return answer
69
+
70
+ except Exception as e:
71
+ # Provide detailed error information
72
+ return f"Error: {str(e)}"
73
 
74
  # Gradio interface
75
  def gradio_app():
76
  with gr.Blocks() as demo:
77
+ gr.Markdown("# Image Description with DeepSeek VL 1.3b\n### Upload an image and ask a question about it.")
78
 
79
  with gr.Row():
80
  image_input = gr.Image(type="pil", label="Upload an Image")
81
+ question_input = gr.Textbox(
82
+ label="Question (optional)",
83
+ placeholder="Enter your question about the image (default: 'Describe each stage of this image.')",
84
+ lines=2
85
+ )
86
 
87
  output_text = gr.Textbox(label="Image Description", interactive=False)
88
 
 
90
 
91
  submit_btn.click(
92
  fn=describe_image,
93
+ inputs=[image_input, question_input], # Pass both image and question as inputs
94
  outputs=output_text
95
  )
96