Spaces:
Running
Running
import gradio as gr | |
from transformers import AutoProcessor, SeamlessM4Tv2Model | |
import torch | |
# 加载模型和处理器 | |
processor = AutoProcessor.from_pretrained("facebook/seamless-m4t-v2-large") | |
model = SeamlessM4Tv2Model.from_pretrained("facebook/seamless-m4t-v2-large") | |
def greet(text,src_lang,tgt_lang): | |
# 输入文本 | |
text_inputs = processor(text=text, src_lang=src_lang, return_tensors="pt") | |
# 生成翻译的文本 | |
output_tokens = model.generate(**text_inputs, tgt_lang=tgt_lang, generate_speech=False) | |
translated_text_from_text = processor.decode(output_tokens[0].tolist()[0], skip_special_tokens=True) | |
return translated_text_from_text | |
text = gr.Textbox(lines=5,label="输入文本",placeholder="请输入文本") | |
src_lang = gr.Dropdown(label="源语言",choices=["en","zh"]) | |
tgt_lang = gr.Dropdown(label="目标语言",choices=["en","zh"]) | |
output_text = gr.Textbox(lines=5,label="翻译文本",placeholder="翻译文本") | |
demo=gr.Interface(fn=greet, inputs=[text,src_lang,tgt_lang], outputs=output_text) | |
demo.launch() |