Spaces:
Sleeping
Sleeping
File size: 6,370 Bytes
52bdf5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
"""gr.Plot() component."""
from __future__ import annotations
import json
from types import ModuleType
from typing import Any, Literal
import altair as alt
from gradio_client.documentation import document
from gradio import processing_utils
from gradio.components.base import Component
from gradio.data_classes import GradioModel
from gradio.events import Events
class PlotData(GradioModel):
type: Literal["altair", "bokeh", "plotly", "matplotlib"]
plot: str
class AltairPlotData(PlotData):
chart: Literal["bar", "line", "scatter"]
type: Literal["altair"] = "altair"
@document()
class Plot(Component):
"""
Creates a plot component to display various kinds of plots (matplotlib, plotly, altair, or bokeh plots are supported). As this component does
not accept user input, it is rarely used as an input component.
Demos: altair_plot, outbreak_forecast, blocks_kinematics, stock_forecast, map_airbnb
Guides: plot-component-for-maps
"""
data_model = PlotData
EVENTS = [Events.change, Events.clear]
def __init__(
self,
value: Any | None = None,
*,
format: str = "png",
label: str | None = None,
every: float | None = None,
show_label: bool | None = None,
container: bool = True,
scale: int | None = None,
min_width: int = 160,
visible: bool = True,
elem_id: str | None = None,
elem_classes: list[str] | str | None = None,
render: bool = True,
):
"""
Parameters:
value: Optionally, supply a default plot object to display, must be a matplotlib, plotly, altair, or bokeh figure, or a callable. If callable, the function will be called whenever the app loads to set the initial value of the component.
format: File format in which to send matplotlib plots to the front end, such as 'jpg' or 'png'.
label: The label for this component. Appears above the component and is also used as the header if there are a table of examples for this component. If None and used in a `gr.Interface`, the label will be the name of the parameter this component is assigned to.
every: If `value` is a callable, run the function 'every' number of seconds while the client connection is open. Has no effect otherwise. The event can be accessed (e.g. to cancel it) via this component's .load_event attribute.
show_label: if True, will display label.
container: If True, will place the component in a container - providing some extra padding around the border.
scale: relative size compared to adjacent Components. For example if Components A and B are in a Row, and A has scale=2, and B has scale=1, A will be twice as wide as B. Should be an integer. scale applies in Rows, and to top-level Components in Blocks where fill_height=True.
min_width: minimum pixel width, will wrap if not sufficient screen space to satisfy this value. If a certain scale value results in this Component being narrower than min_width, the min_width parameter will be respected first.
visible: If False, component will be hidden.
elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles.
elem_classes: An optional list of strings that are assigned as the classes of this component in the HTML DOM. Can be used for targeting CSS styles.
render: If False, component will not render be rendered in the Blocks context. Should be used if the intention is to assign event listeners now but render the component later.
"""
self.format = format
super().__init__(
label=label,
every=every,
show_label=show_label,
container=container,
scale=scale,
min_width=min_width,
visible=visible,
elem_id=elem_id,
elem_classes=elem_classes,
render=render,
value=value,
)
def get_config(self):
try:
import bokeh # type: ignore
bokeh_version = bokeh.__version__
except ImportError:
bokeh_version = None
config = super().get_config()
config["bokeh_version"] = bokeh_version
return config
def preprocess(self, payload: PlotData | None) -> PlotData | None:
"""
Parameters:
payload: The data to display in the plot.
Returns:
(Rarely used) passes the data displayed in the plot as an PlotData dataclass, which includes the plot information as a JSON string, as well as the type of chart and the plotting library.
"""
return payload
def example_payload(self) -> Any:
return None
def example_value(self) -> Any:
return None
def postprocess(self, value: Any) -> PlotData | None:
"""
Parameters:
value: Expects plot data in one of these formats: a matplotlib.Figure, bokeh.Model, plotly.Figure, or altair.Chart object.
Returns:
PlotData: A dataclass containing the plot data as a JSON string, as well as the type of chart and the plotting library.
"""
import matplotlib.figure
if value is None:
return None
if isinstance(value, (ModuleType, matplotlib.figure.Figure)): # type: ignore
dtype = "matplotlib"
out_y = processing_utils.encode_plot_to_base64(value, self.format)
elif "bokeh" in value.__module__:
dtype = "bokeh"
from bokeh.embed import json_item # type: ignore
out_y = json.dumps(json_item(value))
else:
is_altair = "altair" in value.__module__
dtype = "altair" if is_altair else "plotly"
out_y = value.to_json(format="vega")
return PlotData(type=dtype, plot=out_y)
class AltairPlot:
@staticmethod
def create_legend(position, title):
if position == "none":
legend = None
else:
position = {"orient": position} if position else {}
legend = {"title": title, **position}
return legend
@staticmethod
def create_scale(limit):
return alt.Scale(domain=limit) if limit else alt.Undefined
|