File size: 40,877 Bytes
21269d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
from typing import Any, Optional, Tuple
import math

import torch
from torch import nn, Tensor, device
from torch.nn import CrossEntropyLoss

from transformers.activations import ACT2FN
from transformers.modeling_utils import (
    PreTrainedModel,
    apply_chunking_to_forward,
)
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_outputs import (
    BaseModelOutput, 
    MaskedLMOutput,
    BaseModelOutputWithPooling,
)

# some function
def get_extended_attention_mask(attention_mask: Tensor, input_shape: Tuple[int], device: device) -> Tensor:
        """
        Makes broadcastable attention and causal masks so that future and masked tokens are ignored.

        Arguments:
            attention_mask (:obj:`torch.Tensor`):
                Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
            input_shape (:obj:`Tuple[int]`):
                The shape of the input to the model.
            device: (:obj:`torch.device`):
                The device of the input to the model.

        Returns:
            :obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
        """
        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        if attention_mask.dim() == 3:
            extended_attention_mask = attention_mask[:, None, :, :]
        elif attention_mask.dim() == 2:
            # Provided a padding mask of dimensions [batch_size, seq_length]
            # - if the model is a decoder, apply a causal mask in addition to the padding mask
            # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
            extended_attention_mask = attention_mask[:, None, None, :]
        else:
            raise ValueError(
                f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})"
            )

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = extended_attention_mask.to(dtype=torch.long)  # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
        return extended_attention_mask


def get_head_mask(
        head_mask: Optional[Tensor], num_hidden_layers: int, is_attention_chunked: bool = False
    ) -> Tensor:
        """
        Prepare the head mask if needed.

        Args:
            head_mask (:obj:`torch.Tensor` with shape :obj:`[num_heads]` or :obj:`[num_hidden_layers x num_heads]`, `optional`):
                The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard).
            num_hidden_layers (:obj:`int`):
                The number of hidden layers in the model.
            is_attention_chunked: (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not the attentions scores are computed by chunks or not.

        Returns:
            :obj:`torch.Tensor` with shape :obj:`[num_hidden_layers x batch x num_heads x seq_length x seq_length]` or
            list with :obj:`[None]` for each layer.
        """
        head_mask = [None] * num_hidden_layers

        return head_mask


# models
class UnimoConfig(PretrainedConfig):
    
    def __init__(self, **kwargs):
        super().__init__(**kwargs)


class UnimoPreTrainedModel(PreTrainedModel):
    config_class = UnimoConfig
    base_model_prefix = "clip"
    supports_gradient_checkpointing = True
    _keys_to_ignore_on_load_missing = [r"position_ids"]
    
    def __init_weights(self, module):
        pass


class CLIPVisionEmbeddings(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.embed_dim = config.hidden_size
        self.image_size = config.image_size
        self.patch_size = config.patch_size

        self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))

        self.patch_embedding = nn.Conv2d(
            in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size, bias=False
        )

        self.num_patches = (self.image_size // self.patch_size) ** 2
        self.num_positions = self.num_patches + 1
        self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
        self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)))

    def forward(self, pixel_values):
        # pixel_values: (bsz, 2, 3, 224, 224)
        batch_size = pixel_values.shape[0]
        patch_embeds = torch.cat([
                            self.patch_embedding(pixel_values[:, 0]).flatten(2).transpose(1, 2),
                            self.patch_embedding(pixel_values[:, 1]).flatten(2).transpose(1, 2)], 
                            dim=1
                        )   # bsz, 98, 768
        class_embeds = self.class_embedding.expand(batch_size, 1, -1)

        embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
        embeddings = embeddings + torch.cat([self.position_embedding(self.position_ids), self.position_embedding(self.position_ids)[:, 1:]], dim=1)

        return embeddings


class BertEmbeddings(nn.Module):
    """Construct the embeddings from word, position and token_type embeddings."""

    def __init__(self, config):
        super().__init__()
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        # position_ids (1, len position emb) is contiguous in memory and exported when serialized
        self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
        self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))

    def forward(
        self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
    ):
        if input_ids is not None:
            input_shape = input_ids.size()
        else:
            input_shape = inputs_embeds.size()[:-1]

        seq_length = input_shape[1]

        if position_ids is None:
            position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]

        # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
        # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
        # issue #5664
        if token_type_ids is None:
            if hasattr(self, "token_type_ids"):
                buffered_token_type_ids = self.token_type_ids[:, :seq_length]
                buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
                token_type_ids = buffered_token_type_ids_expanded
            else:
                token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)

        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = inputs_embeds + token_type_embeddings
        if self.position_embedding_type == "absolute":
            position_embeddings = self.position_embeddings(position_ids)
            embeddings += position_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


class CLIPAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(self, config):
        super().__init__()
        self.config = config
        self.embed_dim = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.embed_dim // self.num_heads
        assert (
            self.head_dim * self.num_heads == self.embed_dim
        ), f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})."
        self.scale = self.head_dim ** -0.5
        self.dropout = config.attention_dropout

        self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
        self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
        self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
        self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)

    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

    def forward(
        self,
        hidden_states: torch.Tensor,
        output_attentions: bool = False,
        past_key_values: torch.Tensor = None,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        """Input shape: Batch x Time x Channel"""

        bsz, tgt_len, embed_dim = hidden_states.size()

        # get query proj
        query_states = self.q_proj(hidden_states) * self.scale
        key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
        value_states = self._shape(self.v_proj(hidden_states), -1, bsz)

        if past_key_values is not None:
            key_states = torch.cat([past_key_values[0], key_states], dim=2)
            value_states = torch.cat([past_key_values[1], value_states], dim=2)

        proj_shape = (bsz * self.num_heads, -1, self.head_dim)
        query_states = self._shape(query_states, tgt_len, bsz)

        query_states = query_states.view(*proj_shape)
        key_states = key_states.view(*proj_shape)
        value_states = value_states.view(*proj_shape)
        
        src_len = key_states.size(1)
        attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))

        if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
            raise ValueError(
                f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}"
            )       
        attn_weights = nn.functional.softmax(attn_weights, dim=-1)

        if output_attentions:
            # this operation is a bit akward, but it's required to
            # make sure that attn_weights keeps its gradient.
            # In order to do so, attn_weights have to reshaped
            # twice and have to be reused in the following
            attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
            attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
        else:
            attn_weights_reshaped = None

        attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)

        attn_output = torch.bmm(attn_probs, value_states)

        if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {attn_output.size()}"
            )

        attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
        attn_output = attn_output.transpose(1, 2)
        attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)

        attn_output = self.out_proj(attn_output)

        return attn_output, attn_weights_reshaped


class CLIPMLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.activation_fn = ACT2FN[config.hidden_act]
        self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
        self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)

    def forward(self, hidden_states):
        hidden_states = self.fc1(hidden_states)
        hidden_states = self.activation_fn(hidden_states)
        hidden_states = self.fc2(hidden_states)
        return hidden_states


class BertSelfAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.num_attention_heads = config.num_attention_heads   # 12
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads) # 64
        self.all_head_size = self.num_attention_heads * self.attention_head_size    # 768

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
        self.fusion = BertFusion(config)    # 
        
        # # adaptive analogy mask
        # self.adaptive_weight = nn.ParameterList([
        #     #    nn.Parameter(torch.FloatTensor(1).uniform_(1.0, 2.5)),  # example to query
        #     #    nn.Parameter(torch.FloatTensor(1).uniform_(1.0, 2.5))   # query to example
        #         nn.Parameter(torch.FloatTensor(1).uniform_(0.0, 0.5)),  # example to query
        #         nn.Parameter(torch.FloatTensor(1).uniform_(0.5, 0.5))   # query to example
        # ])

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        output_attentions=False,
        visual_hidden_state=None,
        output_qks=None,
        sep_idx=None
    ):
        mixed_query_layer = self.query(hidden_states)

        # If this is instantiated as a cross-attention module, the keys
        # and values come from an encoder; the attention mask needs to be
        # such that the encoder's padding tokens are not attended to.
        key_layer = self.transpose_for_scores(self.key(hidden_states))
        value_layer = self.transpose_for_scores(self.value(hidden_states))
        query_layer = self.transpose_for_scores(mixed_query_layer)

        qks = (key_layer, value_layer) if output_qks else None

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        
        # if sep_idx is not None:
        #     for i, idx in enumerate(sep_idx):
        #         # example to answer
        #         # attention_scores[i, :, :idx[2], idx[2]:] = torch.sigmoid(self.adaptive_weight[0]) * attention_scores[i, :, :idx[2], idx[2]:].clone()
        #         attention_scores[i, :, :idx[2], idx[2]:] = torch.clamp(self.adaptive_weight[0], 0, 0.5) * attention_scores[i, :, :idx[2], idx[2]:].clone()
        #         # answer to example
        #         # attention_scores[i, :, idx[2]:, idx[2]:] = torch.sigmoid(self.adaptive_weight[1]) * attention_scores[i, :, idx[2]:, idx[2]:].clone()
        #         attention_scores[i, :, idx[2]:, idx[2]:] = torch.clamp(self.adaptive_weight[1], 0.5, 1) * attention_scores[i, :, idx[2]:, idx[2]:].clone()
        
        if attention_mask is not None:
            # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
            '''add adaptive analogy mask, attention_scores ~ (bsz, 12, seq_len, seq_len), attention_mask ~ (bsz, 1, seq_len, seq_len)'''
            
            attention_scores = attention_scores + attention_mask
        
        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask
        context_layer = torch.matmul(attention_probs, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)    # bsz, 128, 768
        
        fusion_output = self.fusion(context_layer, visual_hidden_state) if visual_hidden_state is not None else None # add

        outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)

        return outputs, fusion_output, qks


class BertSelfOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class BertFusion(nn.Module):
    def __init__(self, config):
        super().__init__()
        # self.fusion_function = config.fusion_function
        self.fusion_function = 'softmax'

    def forward(
        self,
        hidden_states,
        visual_hidden_state=None,
    ):
        fusion_scores = torch.matmul(hidden_states, visual_hidden_state.transpose(-1, -2))  # bsz, 128, 49
        # if attention_mask is not None:
        #     # attention_mask: bsz, 1, 1, 128; fusion_scores: bsz, 128, 49
        #     fusion_scores = fusion_scores + attention_mask.squeeze(1).transpose(1, 2)
        if self.fusion_function == 'softmax':
            fusion_probs = nn.Softmax(dim=-1)(fusion_scores)
            fusion_output = torch.matmul(fusion_probs, visual_hidden_state)
        elif self.fusion_function == 'max':
            fusion_probs = fusion_scores.max(dim=-1)
        return fusion_output
    

class BertAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.self = BertSelfAttention(config)
        self.output = BertSelfOutput(config)
        self.pruned_heads = set()

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        output_attentions=False,
        visual_hidden_state=None,
        output_qks=None,
        sep_idx=None,
    ):
        self_outputs, fusion_output, qks = self.self(
            hidden_states,
            attention_mask,
            head_mask,
            output_attentions,
            visual_hidden_state,
            output_qks,
            sep_idx
        )
        attention_output = self.output(self_outputs[0], hidden_states)
        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
        return outputs, fusion_output, qks


class BertIntermediate(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
        self.fusion_dense = nn.Linear(config.hidden_size, config.intermediate_size)
        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act

    def forward(self, hidden_states, fusion_output=None):
        hidden_states = self.dense(hidden_states)
        if fusion_output is not None:
            fusion_states = self.fusion_dense(fusion_output)
            hidden_states = hidden_states + fusion_states
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


class BertOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class CLIPEncoderLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.embed_dim = config.hidden_size
        self.self_attn = CLIPAttention(config)
        self.layer_norm1 = nn.LayerNorm(self.embed_dim)
        self.mlp = CLIPMLP(config)
        self.layer_norm2 = nn.LayerNorm(self.embed_dim)

    def forward(
        self,
        hidden_states: torch.Tensor,
        output_attentions: bool = False,
        past_key_values: torch.Tensor = None,
    ):
        """
        Args:
            hidden_states (:obj:`torch.FloatTensor`): input to the layer of shape :obj:`(seq_len, batch, embed_dim)`
            attention_mask (:obj:`torch.FloatTensor`): attention mask of size
                :obj:`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
            layer_head_mask (:obj:`torch.FloatTensor`): mask for attention heads in a given layer of size
                :obj:`(config.encoder_attention_heads,)`.
            output_attentions (:obj:`bool`, `optional`):
                Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under
                returned tensors for more detail.
        """
        residual = hidden_states

        hidden_states = self.layer_norm1(hidden_states)
        hidden_states, attn_weights = self.self_attn(
            hidden_states=hidden_states,
            output_attentions=output_attentions,
            past_key_values=past_key_values,
        )
        hidden_states = residual + hidden_states

        residual = hidden_states
        hidden_states = self.layer_norm2(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (attn_weights,)
    
        return outputs


class BertLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.chunk_size_feed_forward = config.chunk_size_feed_forward
        self.seq_len_dim = 1
        self.attention = BertAttention(config)
        self.add_cross_attention = config.add_cross_attention
        self.intermediate = BertIntermediate(config)
        self.output = BertOutput(config)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        output_attentions=False,
        visual_hidden_state=None,
        output_qks=None,
        sep_idx=None,
    ):
        # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
        # self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
        self_attention_outputs, fusion_output, qks = self.attention(
            hidden_states,
            attention_mask,
            head_mask,
            output_attentions=output_attentions,
            visual_hidden_state=visual_hidden_state,
            output_qks=output_qks,
            sep_idx=sep_idx,
        )
        attention_output = self_attention_outputs[0]

        outputs = self_attention_outputs[1:]  # add self attentions if we output attention weights

        layer_output = apply_chunking_to_forward(
            self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output, fusion_output
        )
        outputs = (layer_output,) + outputs
        if output_qks: 
            outputs += (qks,)

        return outputs

    def feed_forward_chunk(self, attention_output, fusion_output):
        intermediate_output = self.intermediate(attention_output, fusion_output)
        layer_output = self.output(intermediate_output, attention_output)
        return layer_output


class UnimoEncoder(nn.Module):
    def __init__(self, vision_config, text_config):
        super().__init__()
        self.vision_config = vision_config
        self.text_config = text_config

        self.vision_layers = nn.ModuleList([CLIPEncoderLayer(vision_config) for _ in range(vision_config.num_hidden_layers)])
        self.text_layer = nn.ModuleList([BertLayer(text_config) for _ in range(text_config.num_hidden_layers)])
    
    def forward(
        self,
        vision_embeds=None,
        text_embeds=None,
        attention_mask=None,
        head_mask=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        sep_idx=None,
    ):
        assert self.vision_config.num_hidden_layers == self.text_config.num_hidden_layers

        all_vision_hidden_states = () if output_hidden_states else None
        all_text_hidden_states = () if output_hidden_states else None
        all_vision_attentions = () if output_attentions else None
        all_text_attentions = () if output_attentions else None
        
        vision_hidden_states = vision_embeds
        text_hidden_states = text_embeds
        for idx in range(self.vision_config.num_hidden_layers):
            if output_hidden_states:
                all_vision_hidden_states = all_vision_hidden_states + (vision_hidden_states, )
                all_text_hidden_states = all_text_hidden_states + (text_hidden_states, )
            
            # vision
            # TODO: 9-12 layers past text as pkv to vision
            past_key_values = text_layer_output[-1] if idx >= 8 else None
            vision_layer_module = self.vision_layers[idx]
            vision_layer_output = vision_layer_module(
                    vision_hidden_states,
                    output_attentions=output_attentions,
                    past_key_values=past_key_values,
            )
            vision_hidden_states = vision_layer_output[0]

            # text
            # TODO: 9-12 layers past vison qks to text
            last_hidden_state = vision_hidden_states if idx >= 8 else None
            output_qks = True if idx >= 7 else None
            layer_head_mask = head_mask[idx] if head_mask is not None else None
            text_layer_module = self.text_layer[idx]
            text_layer_output = text_layer_module(
                    text_hidden_states,
                    attention_mask=attention_mask,
                    head_mask=layer_head_mask,
                    visual_hidden_state=last_hidden_state,
                    output_attentions=output_attentions,
                    output_qks=output_qks,
                    sep_idx=sep_idx,
            )
            text_hidden_states = text_layer_output[0]
            if output_attentions:
                all_vision_attentions = all_vision_attentions + (vision_layer_output[1], )
                all_text_attentions = all_text_attentions + (text_layer_output[1], )
        
        if output_hidden_states:
                all_vision_hidden_states = all_vision_hidden_states + (vision_hidden_states, )
                all_text_hidden_states = all_text_hidden_states + (text_hidden_states, )
        
        if not return_dict:
            return tuple(
                v for v in [
                    text_hidden_states,
                    all_text_hidden_states,
                    all_text_attentions,
                ] if v is not None)
        return BaseModelOutput(
            last_hidden_state=text_hidden_states, hidden_states=all_text_hidden_states, attentions=all_text_attentions
        )


class BertPooler(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class UnimoModel(nn.Module):
    def __init__(self, vision_config, text_config, add_pooling_layer=True):
        super(UnimoModel, self).__init__()
        # vision model
        self.vision_config = vision_config
        self.vision_embeddings = CLIPVisionEmbeddings(vision_config)
        self.vision_pre_layrnorm = nn.LayerNorm(vision_config.hidden_size)
        self.vision_post_layernorm = nn.LayerNorm(vision_config.hidden_size)

        # text model
        self.text_config = text_config
        self.text_embeddings = BertEmbeddings(text_config)
        self.text_pooler = BertPooler(text_config) if add_pooling_layer else None

        # all
        self.encoder = UnimoEncoder(vision_config, text_config)

        self.device = vision_config.device

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        sep_idx=None,
        
        pixel_values=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        # pre vision
        vision_embedding_output = self.vision_embeddings(pixel_values)
        vision_embedding_output = self.vision_pre_layrnorm(vision_embedding_output)

        # pre text
        input_shape = input_ids.size()
        batch_size, seq_length = input_shape
        device = input_ids.device
        if attention_mask is None:
            attention_mask = torch.ones(((batch_size, seq_length)), device=device)
        if token_type_ids is None:
            if hasattr(self.text_embeddings, "token_type_ids"):
                buffered_token_type_ids = self.text_embeddings.token_type_ids[:, :seq_length]
                buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
                token_type_ids = buffered_token_type_ids_expanded
            else:
                token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)


        extended_attention_mask: torch.Tensor = get_extended_attention_mask(attention_mask, input_shape, device)
        head_mask = get_head_mask(head_mask, self.text_config.num_hidden_layers)    # [None]*12

        text_embedding_output = self.text_embeddings(
            input_ids=input_ids,
            position_ids=position_ids,
            token_type_ids=token_type_ids,
        )

        # all encoder
        encoder_outputs = self.encoder(
            vision_embeds=vision_embedding_output,
            text_embeds=text_embedding_output,
            attention_mask=extended_attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            sep_idx=sep_idx,
        )
        sequence_output = encoder_outputs[0]
        pooled_output = self.text_pooler(sequence_output) if self.text_pooler is not None else None

        if not return_dict:
            return (sequence_output, pooled_output) + encoder_outputs[1:]

        return BaseModelOutputWithPooling(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )

    def _init_text_weights(self, module):
        """Initialize the weights"""
        if isinstance(module, nn.Linear):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.text_config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.text_config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)

    def get_input_embeddings(self):
        return self.text_embeddings.word_embeddings

    def set_input_embeddings(self, value):
        self.text_embeddings.word_embeddings = value

    def resize_token_embeddings(self, new_num_tokens):
        old_embeddings = self.get_input_embeddings()
        new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens)
        self.set_input_embeddings(new_embeddings)

    def _get_resized_embeddings(
        self, old_embeddings: nn.Embedding, new_num_tokens: Optional[int] = None
    ) -> nn.Embedding:
        """
        Build a resized Embedding Module from a provided token Embedding Module. Increasing the size will add newly
        initialized vectors at the end. Reducing the size will remove vectors from the end

        Args:
            old_embeddings (:obj:`torch.nn.Embedding`):
                Old embeddings to be resized.
            new_num_tokens (:obj:`int`, `optional`):
                New number of tokens in the embedding matrix.

                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
                vectors from the end. If not provided or :obj:`None`, just returns a pointer to the input tokens
                :obj:`torch.nn.Embedding`` module of the model without doing anything.

        Return:
            :obj:`torch.nn.Embedding`: Pointer to the resized Embedding Module or the old Embedding Module if
            :obj:`new_num_tokens` is :obj:`None`
        """
        if new_num_tokens is None:
            return old_embeddings
        else:
            old_num_tokens, old_embedding_dim = old_embeddings.weight.size()

        if old_num_tokens == new_num_tokens:
            return old_embeddings

        if not isinstance(old_embeddings, nn.Embedding):
            raise TypeError(
                f"Old embeddings are of type {type(old_embeddings)}, which is not an instance of {nn.Embedding}."
                f"You should either use a different resize function or make sure that `old_embeddings` are an instance of {nn.Embedding}."
            )

        # Build new embeddings
        new_embeddings = nn.Embedding(new_num_tokens, old_embedding_dim).to(
            self.device, dtype=old_embeddings.weight.dtype
        )

        # initialize all new embeddings (in particular added tokens)
        self._init_text_weights(new_embeddings)

        # Copy token embeddings from the previous weights

        # numbers of tokens to copy
        n = min(old_num_tokens, new_num_tokens)
        new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :]

        return new_embeddings

        
class UnimoForMaskedLM(nn.Module):
    def __init__(self, vision_config, text_config):
        super().__init__()
        self.unimo = UnimoModel(vision_config, text_config)
        self.cls = UnimoOnlyMLMHead(text_config)
        self.config = text_config

        self.tie_weights()

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        sep_idx=None,
        
        pixel_values=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        labels=None,
    ):
        outputs = self.unimo(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            sep_idx=sep_idx,
            pixel_values=pixel_values,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]
        prediction_scores, trans_hidden_states = self.cls(sequence_output)

        masked_lm_loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()  # -100 index = padding token
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))

        if not return_dict:
            output = (prediction_scores,) + outputs[2:]
            return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output

        return MaskedLMOutput(
            loss=masked_lm_loss,
            logits=prediction_scores,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        ), trans_hidden_states

    def get_input_embeddings(self):
        return self.unimo.text_embeddings.word_embeddings

    def get_output_embeddings(self):
        return self.cls.predictions.decoder

    def set_output_embeddings(self, new_embeddings):
        self.cls.predictions.decoder = new_embeddings

    def tie_weights(self):
        output_embeddings = self.get_output_embeddings()
        self._tie_or_clone_weights(output_embeddings, self.unimo.get_input_embeddings())

    def _tie_or_clone_weights(self, output_embeddings, input_embeddings):
        """Tie or clone module weights depending of whether we are using TorchScript or not"""
        if self.config.torchscript:
            output_embeddings.weight = nn.Parameter(input_embeddings.weight.clone())
        else:
            output_embeddings.weight = input_embeddings.weight

        if getattr(output_embeddings, "bias", None) is not None:
            output_embeddings.bias.data = nn.functional.pad(
                output_embeddings.bias.data,
                (
                    0,
                    output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0],
                ),
                "constant",
                0,
            )
        if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"):
            output_embeddings.out_features = input_embeddings.num_embeddings

    def resize_token_embeddings(self, new_num_tokens):
        self.unimo.resize_token_embeddings(new_num_tokens)
        self.tie_weights()

class UnimoOnlyMLMHead(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.predictions = UnimoLMPredictionHead(config)

    def forward(self, sequence_output):
        prediction_scores, trans_hidden_states = self.predictions(sequence_output)
        return prediction_scores, trans_hidden_states


class UnimoLMPredictionHead(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.transform = BertPredictionHeadTransform(config)

        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
        self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        self.bias = nn.Parameter(torch.zeros(config.vocab_size))

        # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
        self.decoder.bias = self.bias

    def forward(self, hidden_states):
        trans_hidden_states = self.transform(hidden_states)
        hidden_states = self.decoder(trans_hidden_states)
        return hidden_states, trans_hidden_states


class BertPredictionHeadTransform(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        if isinstance(config.hidden_act, str):
            self.transform_act_fn = ACT2FN[config.hidden_act]
        else:
            self.transform_act_fn = config.hidden_act
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)
        return hidden_states