Spaces:
Running
Running
flow3rdown
commited on
Commit
·
21269d7
1
Parent(s):
16bab0d
Add inference module
Browse files- app.py +109 -4
- dataset/MARS/analogy_entities.txt +2063 -0
- dataset/MARS/analogy_entity_to_wiki_qid.txt +2411 -0
- dataset/MARS/analogy_relations.txt +27 -0
- dataset/MarKG/entity2text.txt +0 -0
- dataset/MarKG/entity2textlong.txt +0 -0
- dataset/MarKG/relation2text.txt +192 -0
- dataset/MarKG/relation2textlong.txt +192 -0
- dataset/MarKG/wiki_tuple_ids.txt +0 -0
- modeling_unimo.py +976 -0
app.py
CHANGED
@@ -1,7 +1,112 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
def single_inference_iit(head_img, head_id, tail_img, tail_id, question_txt, question_id):
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
def single_inference_tti(head_txt, head_id, tail_txt, tail_id, question_img, question_id):
|
7 |
return head_txt
|
@@ -53,20 +158,20 @@ def single_tab_tti():
|
|
53 |
tail_text = gr.Textbox(lines=1, label="Tail Name")
|
54 |
tail_ent = gr.Textbox(lines=1, label="Tail Entity")
|
55 |
with gr.Column():
|
56 |
-
|
57 |
question_ent = gr.Textbox(lines=1, label="Question Entity")
|
58 |
submit_btn = gr.Button("Submit")
|
59 |
output_text = gr.Textbox(label="Output")
|
60 |
|
61 |
submit_btn.click(fn=single_inference_iit,
|
62 |
-
inputs=[head_text, head_ent, tail_text, tail_ent,
|
63 |
outputs=[output_text])
|
64 |
|
65 |
examples=[['qinghai_lake', 'Q201294', 'inland_lake', 'Q31805992', 'examples/qinghai_lake.png', 'Q18812548']]
|
66 |
ex = gr.Examples(
|
67 |
examples=examples,
|
68 |
fn=single_inference_iit,
|
69 |
-
inputs=[head_text, head_ent, tail_text, tail_ent,
|
70 |
outputs=[output_text],
|
71 |
cache_examples=True,
|
72 |
run_on_click=True
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from huggingface_hub import hf_hub_download
|
5 |
+
from transformers import BertModel, BertTokenizer, CLIPModel, BertConfig, CLIPConfig, CLIPProcessor
|
6 |
+
from modeling_unimo import UnimoForMaskedLM
|
7 |
+
|
8 |
+
def load_dict_text(path):
|
9 |
+
with open(path, 'r') as f:
|
10 |
+
load_data = {}
|
11 |
+
lines = f.readlines()
|
12 |
+
for line in lines:
|
13 |
+
key, value = line.split('\t')
|
14 |
+
load_data[key] = value.replace('\n', '')
|
15 |
+
return load_data
|
16 |
+
|
17 |
+
def load_text(path):
|
18 |
+
with open(path, 'r') as f:
|
19 |
+
lines = f.readlines()
|
20 |
+
load_data = []
|
21 |
+
for line in lines:
|
22 |
+
load_data.append(line.strip().replace('\n', ''))
|
23 |
+
return load_data
|
24 |
+
|
25 |
+
class MKGformerModel(nn.Module):
|
26 |
+
def __init__(self, text_config, vision_config):
|
27 |
+
super().__init__()
|
28 |
+
self.model = UnimoForMaskedLM(text_config, vision_config)
|
29 |
+
|
30 |
+
def farword(self, batch):
|
31 |
+
return self.model(**batch, return_dict=True)
|
32 |
+
|
33 |
+
# tokenizer
|
34 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
35 |
+
|
36 |
+
# entity and relation
|
37 |
+
ent2text = load_dict_text('./dataset/MarKG/entity2text.txt')
|
38 |
+
rel2text = load_dict_text('./dataset/MarKG/relation2text.txt')
|
39 |
+
analogy_entities = load_text('./dataset/MARS/analogy_entities.txt')
|
40 |
+
analogy_relations = load_text('./dataset/MARS/analogy_relations.txt')
|
41 |
+
ent2description = load_dict_text('./dataset/MarKG/entity2textlong.txt')
|
42 |
+
|
43 |
+
text2ent = {text: ent for ent, text in ent2text.items()}
|
44 |
+
ent2token = {ent: f"[ENTITY_{i}]" for i, ent in enumerate(ent2description)}
|
45 |
+
rel2token = {rel: f"[RELATION_{i}]" for i, rel in enumerate(rel2text)}
|
46 |
+
analogy_ent2token = {ent : f"[ENTITY_{i}]" for i, ent in enumerate(ent2description) if ent in analogy_entities}
|
47 |
+
analogy_rel2token = {rel : f"[RELATION_{i}]" for i, rel in enumerate(rel2text) if rel in analogy_relations}
|
48 |
+
entity_list = list(ent2token.values())
|
49 |
+
relation_list = list(rel2token.values())
|
50 |
+
analogy_ent_list = list(analogy_ent2token.values())
|
51 |
+
analogy_rel_list = list(analogy_rel2token.values())
|
52 |
+
|
53 |
+
num_added_tokens = tokenizer.add_special_tokens({'additional_special_tokens': entity_list})
|
54 |
+
num_added_tokens = tokenizer.add_special_tokens({'additional_special_tokens': relation_list})
|
55 |
+
|
56 |
+
vocab = tokenizer.get_added_vocab() # dict: word: idx
|
57 |
+
relation_id_st = vocab[relation_list[0]]
|
58 |
+
relation_id_ed = vocab[relation_list[-1]] + 1
|
59 |
+
entity_id_st = vocab[entity_list[0]]
|
60 |
+
entity_id_ed = vocab[entity_list[-1]] + 1
|
61 |
+
|
62 |
+
# analogy entities and relations
|
63 |
+
analogy_entity_ids = [vocab[ent] for ent in analogy_ent_list]
|
64 |
+
analogy_relation_ids = [vocab[rel] for rel in analogy_rel_list]
|
65 |
+
num_added_tokens = tokenizer.add_special_tokens({'additional_special_tokens': ["[R]"]})
|
66 |
+
|
67 |
+
# model
|
68 |
+
checkpoint_path = hf_hub_download(repo_id='flow3rdown/mkgformer_mart_ft', filename="mkgformer_mart_ft", repo_type='model')
|
69 |
+
clip_config = CLIPConfig.from_pretrained('openai/clip-vit-base-patch32').vision_config
|
70 |
+
clip_config.device = 'cpu'
|
71 |
+
bert_config = BertConfig.from_pretrained('bert-base-uncased')
|
72 |
+
mkgformer = MKGformerModel(clip_config, bert_config)
|
73 |
+
mkgformer.model.resize_token_embeddings(len(tokenizer))
|
74 |
+
|
75 |
+
mkgformer.load_state_dict(torch.load(checkpoint_path, map_location='cpu')["state_dict"])
|
76 |
+
|
77 |
+
# processor
|
78 |
+
processor = CLIPProcessor.from_pretrained('openai/clip-vit-base-patch32')
|
79 |
+
|
80 |
|
81 |
def single_inference_iit(head_img, head_id, tail_img, tail_id, question_txt, question_id):
|
82 |
+
# (I, I) -> (T, ?)
|
83 |
+
head_ent_text, tail_ent_text = ent2description[head_id], ent2description[tail_id]
|
84 |
+
|
85 |
+
inputs = tokenizer(
|
86 |
+
tokenizer.sep_token.join([analogy_ent2token[head_id] + " " + head_ent_text, "[R] ", analogy_ent2token[tail_id] + " " + tail_ent_text]),
|
87 |
+
tokenizer.sep_token.join([analogy_ent2token[question_id] + " ", "[R] ", "[MASK]"]),
|
88 |
+
truncation="longest_first", max_length=128, padding="longest", return_tensors='pt', add_special_tokens=True)
|
89 |
+
sep_idx = [[i for i, ids in enumerate(input_ids) if ids == tokenizer.sep_token_id] for input_ids in inputs['input_ids']]
|
90 |
+
inputs['sep_idx'] = torch.tensor(sep_idx)
|
91 |
+
inputs['attention_mask'] = inputs['attention_mask'].unsqueeze(1).expand([inputs['input_ids'].size(0), inputs['input_ids'].size(1), inputs['input_ids'].size(1)]).clone()
|
92 |
+
for i, idx in enumerate(sep_idx):
|
93 |
+
inputs['attention_mask'][i, :idx[2], idx[2]:] = 0
|
94 |
+
|
95 |
+
# image
|
96 |
+
pixel_values = processor(images=[head_img, tail_img], return_tensors='pt')['pixel_values'].squeeze()
|
97 |
+
inputs['pixel_values'] = pixel_values.unsqueeze(0)
|
98 |
+
|
99 |
+
input_ids = inputs['input_ids']
|
100 |
+
|
101 |
+
model_output = mkgformer.model(**inputs, return_dict=True)
|
102 |
+
logits = model_output[0].logits
|
103 |
+
bsz = input_ids.shape[0]
|
104 |
+
|
105 |
+
_, mask_idx = (input_ids == tokenizer.mask_token_id).nonzero(as_tuple=True) # bsz
|
106 |
+
mask_logits = logits[torch.arange(bsz), mask_idx][:, analogy_entity_ids] # bsz, 1, entity
|
107 |
+
answer = ent2text[list(analogy_ent2token.keys())[mask_logits.argmax().item()]]
|
108 |
+
|
109 |
+
return answer
|
110 |
|
111 |
def single_inference_tti(head_txt, head_id, tail_txt, tail_id, question_img, question_id):
|
112 |
return head_txt
|
|
|
158 |
tail_text = gr.Textbox(lines=1, label="Tail Name")
|
159 |
tail_ent = gr.Textbox(lines=1, label="Tail Entity")
|
160 |
with gr.Column():
|
161 |
+
question_image = gr.Image(type='pil', label="Question Image")
|
162 |
question_ent = gr.Textbox(lines=1, label="Question Entity")
|
163 |
submit_btn = gr.Button("Submit")
|
164 |
output_text = gr.Textbox(label="Output")
|
165 |
|
166 |
submit_btn.click(fn=single_inference_iit,
|
167 |
+
inputs=[head_text, head_ent, tail_text, tail_ent, question_image, question_ent],
|
168 |
outputs=[output_text])
|
169 |
|
170 |
examples=[['qinghai_lake', 'Q201294', 'inland_lake', 'Q31805992', 'examples/qinghai_lake.png', 'Q18812548']]
|
171 |
ex = gr.Examples(
|
172 |
examples=examples,
|
173 |
fn=single_inference_iit,
|
174 |
+
inputs=[head_text, head_ent, tail_text, tail_ent, question_image, question_ent],
|
175 |
outputs=[output_text],
|
176 |
cache_examples=True,
|
177 |
run_on_click=True
|
dataset/MARS/analogy_entities.txt
ADDED
@@ -0,0 +1,2063 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Q838811
|
2 |
+
Q184840
|
3 |
+
Q998
|
4 |
+
Q165447
|
5 |
+
Q495304
|
6 |
+
Q2935
|
7 |
+
Q103129
|
8 |
+
Q217602
|
9 |
+
Q8434
|
10 |
+
Q14373
|
11 |
+
Q100293148
|
12 |
+
Q169031
|
13 |
+
Q220869
|
14 |
+
Q2329
|
15 |
+
Q6004788
|
16 |
+
Q974
|
17 |
+
Q283233
|
18 |
+
Q838312
|
19 |
+
Q4690798
|
20 |
+
Q1566593
|
21 |
+
Q125191
|
22 |
+
Q21552830
|
23 |
+
Q42848
|
24 |
+
Q12819564
|
25 |
+
Q10786776
|
26 |
+
Q3372957
|
27 |
+
Q9158768
|
28 |
+
Q235155
|
29 |
+
Q327245
|
30 |
+
Q44705078
|
31 |
+
Q753
|
32 |
+
Q1196408
|
33 |
+
Q3051005
|
34 |
+
Q56139
|
35 |
+
Q233861
|
36 |
+
Q339353
|
37 |
+
Q8799
|
38 |
+
Q20129
|
39 |
+
Q7873
|
40 |
+
Q42764222
|
41 |
+
Q11410
|
42 |
+
Q188055
|
43 |
+
Q109564569
|
44 |
+
Q25497
|
45 |
+
Q30461
|
46 |
+
Q2290980
|
47 |
+
Q5242962
|
48 |
+
Q3732574
|
49 |
+
Q6497624
|
50 |
+
Q180684
|
51 |
+
Q7242
|
52 |
+
Q1650915
|
53 |
+
Q44432
|
54 |
+
Q2665615
|
55 |
+
Q3325266
|
56 |
+
Q170790
|
57 |
+
Q2381698
|
58 |
+
Q488383
|
59 |
+
Q43177
|
60 |
+
Q1760818
|
61 |
+
Q81171102
|
62 |
+
Q11451
|
63 |
+
Q16572
|
64 |
+
Q6620231
|
65 |
+
Q1292119
|
66 |
+
Q188869
|
67 |
+
Q25956
|
68 |
+
Q1339255
|
69 |
+
Q15328
|
70 |
+
Q40357
|
71 |
+
Q179904
|
72 |
+
Q1196314
|
73 |
+
Q1250916
|
74 |
+
Q7235103
|
75 |
+
Q20723554
|
76 |
+
Q102397207
|
77 |
+
Q36496
|
78 |
+
Q1416279
|
79 |
+
Q12348865
|
80 |
+
Q8047
|
81 |
+
Q574433
|
82 |
+
Q865588
|
83 |
+
Q602854
|
84 |
+
Q221836
|
85 |
+
Q1466064
|
86 |
+
Q244158
|
87 |
+
Q193432
|
88 |
+
Q1435365
|
89 |
+
Q234129
|
90 |
+
Q14212
|
91 |
+
Q1544262
|
92 |
+
Q21208
|
93 |
+
Q7111875
|
94 |
+
Q11034
|
95 |
+
Q2142250
|
96 |
+
Q41796
|
97 |
+
Q13189320
|
98 |
+
Q6555422
|
99 |
+
Q7889
|
100 |
+
Q15729017
|
101 |
+
Q7978035
|
102 |
+
Q173950
|
103 |
+
Q1396399
|
104 |
+
Q2751223
|
105 |
+
Q1050405
|
106 |
+
Q7366
|
107 |
+
Q16533
|
108 |
+
Q331481
|
109 |
+
Q629
|
110 |
+
Q97502608
|
111 |
+
Q49850
|
112 |
+
Q45190
|
113 |
+
Q5046723
|
114 |
+
Q599151
|
115 |
+
Q93184
|
116 |
+
Q6072584
|
117 |
+
Q877998
|
118 |
+
Q627
|
119 |
+
Q8386
|
120 |
+
Q24885626
|
121 |
+
Q2811064
|
122 |
+
Q209
|
123 |
+
Q9368
|
124 |
+
Q191768
|
125 |
+
Q123509
|
126 |
+
Q988108
|
127 |
+
Q200253
|
128 |
+
Q21818619
|
129 |
+
Q1243001
|
130 |
+
Q42302
|
131 |
+
Q270380
|
132 |
+
Q506
|
133 |
+
Q337907
|
134 |
+
Q23595
|
135 |
+
Q45085932
|
136 |
+
Q109246805
|
137 |
+
Q81944
|
138 |
+
Q869095
|
139 |
+
Q214649
|
140 |
+
Q208021
|
141 |
+
Q573952
|
142 |
+
Q7380
|
143 |
+
Q3962
|
144 |
+
Q618710
|
145 |
+
Q33669098
|
146 |
+
Q23444
|
147 |
+
Q2118942
|
148 |
+
Q40260
|
149 |
+
Q132911
|
150 |
+
Q14328596
|
151 |
+
Q6607
|
152 |
+
Q200539
|
153 |
+
Q36963
|
154 |
+
Q60415975
|
155 |
+
Q20738981
|
156 |
+
Q101097118
|
157 |
+
Q82794
|
158 |
+
Q111653591
|
159 |
+
Q15805316
|
160 |
+
Q5151
|
161 |
+
Q1599148
|
162 |
+
Q370185
|
163 |
+
Q7617440
|
164 |
+
Q7748
|
165 |
+
Q20490867
|
166 |
+
Q51
|
167 |
+
Q18162636
|
168 |
+
Q40435
|
169 |
+
Q14388
|
170 |
+
Q112597033
|
171 |
+
Q22656
|
172 |
+
Q19758137
|
173 |
+
Q55604566
|
174 |
+
Q16887036
|
175 |
+
Q186150
|
176 |
+
Q3050175
|
177 |
+
Q646
|
178 |
+
Q27496
|
179 |
+
Q3406654
|
180 |
+
Q185583
|
181 |
+
Q7850
|
182 |
+
Q168002
|
183 |
+
Q7860
|
184 |
+
Q23009
|
185 |
+
Q65
|
186 |
+
Q44782
|
187 |
+
Q16003532
|
188 |
+
Q23540
|
189 |
+
Q15551438
|
190 |
+
Q756
|
191 |
+
Q1720648
|
192 |
+
Q947686
|
193 |
+
Q856887
|
194 |
+
Q110155210
|
195 |
+
Q3114762
|
196 |
+
Q8087
|
197 |
+
Q1475429
|
198 |
+
Q18754
|
199 |
+
Q80157
|
200 |
+
Q26377667
|
201 |
+
Q2526135
|
202 |
+
Q80024808
|
203 |
+
Q57216
|
204 |
+
Q25372
|
205 |
+
Q1460233
|
206 |
+
Q40080
|
207 |
+
Q12334336
|
208 |
+
Q2074836
|
209 |
+
Q25101745
|
210 |
+
Q718570
|
211 |
+
Q182153
|
212 |
+
Q11620540
|
213 |
+
Q282
|
214 |
+
Q42948
|
215 |
+
Q221673
|
216 |
+
Q34095
|
217 |
+
Q4681350
|
218 |
+
Q103827699
|
219 |
+
Q7561
|
220 |
+
Q98089548
|
221 |
+
Q2236563
|
222 |
+
Q109121530
|
223 |
+
Q212198
|
224 |
+
Q96622169
|
225 |
+
Q236371
|
226 |
+
Q38127868
|
227 |
+
Q61285
|
228 |
+
Q5119
|
229 |
+
Q165233
|
230 |
+
Q38645
|
231 |
+
Q4795846
|
232 |
+
Q39073224
|
233 |
+
Q13119823
|
234 |
+
Q81895
|
235 |
+
Q783794
|
236 |
+
Q193666
|
237 |
+
Q38695
|
238 |
+
Q14332
|
239 |
+
Q129026
|
240 |
+
Q831735
|
241 |
+
Q104439289
|
242 |
+
Q107008077
|
243 |
+
Q846664
|
244 |
+
Q1263003
|
245 |
+
Q29485
|
246 |
+
Q14674
|
247 |
+
Q180846
|
248 |
+
Q986291
|
249 |
+
Q9266
|
250 |
+
Q211521
|
251 |
+
Q1127296
|
252 |
+
Q40458125
|
253 |
+
Q60315954
|
254 |
+
Q61503220
|
255 |
+
Q37517
|
256 |
+
Q105764136
|
257 |
+
Q185789
|
258 |
+
Q2125243
|
259 |
+
Q16523690
|
260 |
+
Q1001059
|
261 |
+
Q6279182
|
262 |
+
Q133500
|
263 |
+
Q679300
|
264 |
+
Q296955
|
265 |
+
Q901785
|
266 |
+
Q76115
|
267 |
+
Q80973
|
268 |
+
Q7547763
|
269 |
+
Q107383376
|
270 |
+
Q103838588
|
271 |
+
Q1630633
|
272 |
+
Q160232
|
273 |
+
Q633625
|
274 |
+
Q191851
|
275 |
+
Q16875619
|
276 |
+
Q18185
|
277 |
+
Q65510617
|
278 |
+
Q919348
|
279 |
+
Q36649
|
280 |
+
Q331710
|
281 |
+
Q7391292
|
282 |
+
Q2348
|
283 |
+
Q6303561
|
284 |
+
Q165714
|
285 |
+
Q986177
|
286 |
+
Q45867
|
287 |
+
Q27686
|
288 |
+
Q1470757
|
289 |
+
Q171187
|
290 |
+
Q18001597
|
291 |
+
Q614467
|
292 |
+
Q1620031
|
293 |
+
Q5893251
|
294 |
+
Q34396
|
295 |
+
Q245005
|
296 |
+
Q16874635
|
297 |
+
Q7369
|
298 |
+
Q170658
|
299 |
+
Q37156731
|
300 |
+
Q183129
|
301 |
+
Q11631
|
302 |
+
Q14400
|
303 |
+
Q107364261
|
304 |
+
Q25288
|
305 |
+
Q286
|
306 |
+
Q5283
|
307 |
+
Q18812548
|
308 |
+
Q21655367
|
309 |
+
Q31808687
|
310 |
+
Q17562059
|
311 |
+
Q323840
|
312 |
+
Q63677013
|
313 |
+
Q132744
|
314 |
+
Q131263
|
315 |
+
Q43229
|
316 |
+
Q122508
|
317 |
+
Q1156854
|
318 |
+
Q1573122
|
319 |
+
Q91165
|
320 |
+
Q22657
|
321 |
+
Q73371931
|
322 |
+
Q111084907
|
323 |
+
Q178794
|
324 |
+
Q104882831
|
325 |
+
Q39911916
|
326 |
+
Q581459
|
327 |
+
Q7378
|
328 |
+
Q11707
|
329 |
+
Q747810
|
330 |
+
Q853058
|
331 |
+
Q134808
|
332 |
+
Q37654
|
333 |
+
Q276099
|
334 |
+
Q20862847
|
335 |
+
Q4668171
|
336 |
+
Q21955018
|
337 |
+
Q305418
|
338 |
+
Q83363
|
339 |
+
Q24897655
|
340 |
+
Q152
|
341 |
+
Q56274905
|
342 |
+
Q1137365
|
343 |
+
Q876776
|
344 |
+
Q1824165
|
345 |
+
Q179723
|
346 |
+
Q22676
|
347 |
+
Q112578360
|
348 |
+
Q44
|
349 |
+
Q203415
|
350 |
+
Q1907525
|
351 |
+
Q683906
|
352 |
+
Q211086
|
353 |
+
Q30
|
354 |
+
Q1458430
|
355 |
+
Q16938807
|
356 |
+
Q2986261
|
357 |
+
Q4259259
|
358 |
+
Q3308178
|
359 |
+
Q9121
|
360 |
+
Q17054224
|
361 |
+
Q184754
|
362 |
+
Q8514
|
363 |
+
Q1153471
|
364 |
+
Q2743689
|
365 |
+
Q687900
|
366 |
+
Q23883
|
367 |
+
Q178561
|
368 |
+
Q1064858
|
369 |
+
Q17319881
|
370 |
+
Q7406919
|
371 |
+
Q6663
|
372 |
+
Q496696
|
373 |
+
Q22667
|
374 |
+
Q23538
|
375 |
+
Q621114
|
376 |
+
Q38166
|
377 |
+
Q1469340
|
378 |
+
Q851782
|
379 |
+
Q148
|
380 |
+
Q181600
|
381 |
+
Q54803638
|
382 |
+
Q46999639
|
383 |
+
Q551997
|
384 |
+
Q64634437
|
385 |
+
Q170412
|
386 |
+
Q25653
|
387 |
+
Q28298
|
388 |
+
Q41217
|
389 |
+
Q25107
|
390 |
+
Q189393
|
391 |
+
Q6813432
|
392 |
+
Q6266
|
393 |
+
Q207832
|
394 |
+
Q11006
|
395 |
+
Q499916
|
396 |
+
Q383973
|
397 |
+
Q3217573
|
398 |
+
Q83093
|
399 |
+
Q20706561
|
400 |
+
Q41176
|
401 |
+
Q11413
|
402 |
+
Q40128349
|
403 |
+
Q168247
|
404 |
+
Q42329
|
405 |
+
Q1758037
|
406 |
+
Q3071551
|
407 |
+
Q580939
|
408 |
+
Q1057
|
409 |
+
Q9128
|
410 |
+
Q8074
|
411 |
+
Q63013258
|
412 |
+
Q178898
|
413 |
+
Q44235
|
414 |
+
Q1770
|
415 |
+
Q65940913
|
416 |
+
Q11474
|
417 |
+
Q127956
|
418 |
+
Q107246611
|
419 |
+
Q56056305
|
420 |
+
Q4284971
|
421 |
+
Q162
|
422 |
+
Q132821
|
423 |
+
Q7414
|
424 |
+
Q9430
|
425 |
+
Q37105
|
426 |
+
Q7569
|
427 |
+
Q2565924
|
428 |
+
Q9257166
|
429 |
+
Q206615
|
430 |
+
Q38
|
431 |
+
Q9482
|
432 |
+
Q345367
|
433 |
+
Q4233325
|
434 |
+
Q106476041
|
435 |
+
Q165947
|
436 |
+
Q1758639
|
437 |
+
Q1004
|
438 |
+
Q42295
|
439 |
+
Q4197743
|
440 |
+
Q107342
|
441 |
+
Q523
|
442 |
+
Q1595418
|
443 |
+
Q15729598
|
444 |
+
Q788926
|
445 |
+
Q7747542
|
446 |
+
Q13159882
|
447 |
+
Q60
|
448 |
+
Q55876931
|
449 |
+
Q773108
|
450 |
+
Q3306164
|
451 |
+
Q193605
|
452 |
+
Q73545549
|
453 |
+
Q834191
|
454 |
+
Q335234
|
455 |
+
Q34956
|
456 |
+
Q12280
|
457 |
+
Q83437
|
458 |
+
Q814207
|
459 |
+
Q4116742
|
460 |
+
Q11422
|
461 |
+
Q105507
|
462 |
+
Q11042
|
463 |
+
Q82604
|
464 |
+
Q213142
|
465 |
+
Q1269
|
466 |
+
Q194112
|
467 |
+
Q20737431
|
468 |
+
Q96093619
|
469 |
+
Q1484064
|
470 |
+
Q363931
|
471 |
+
Q134052
|
472 |
+
Q1277575
|
473 |
+
Q12370
|
474 |
+
Q109581753
|
475 |
+
Q105731
|
476 |
+
Q2215554
|
477 |
+
Q107998873
|
478 |
+
Q208160
|
479 |
+
Q111694088
|
480 |
+
Q610190
|
481 |
+
Q849964
|
482 |
+
Q604748
|
483 |
+
Q58093
|
484 |
+
Q3140971
|
485 |
+
Q375102
|
486 |
+
Q643352
|
487 |
+
Q336751
|
488 |
+
Q131656
|
489 |
+
Q15332375
|
490 |
+
Q37241976
|
491 |
+
Q160342
|
492 |
+
Q488798
|
493 |
+
Q17200001
|
494 |
+
Q37129
|
495 |
+
Q11432
|
496 |
+
Q177634
|
497 |
+
Q196
|
498 |
+
Q118093
|
499 |
+
Q189737
|
500 |
+
Q33971
|
501 |
+
Q8486
|
502 |
+
Q4503831
|
503 |
+
Q34876
|
504 |
+
Q814232
|
505 |
+
Q1241356
|
506 |
+
Q185939
|
507 |
+
Q34577
|
508 |
+
Q1223829
|
509 |
+
Q58157328
|
510 |
+
Q9005258
|
511 |
+
Q4781618
|
512 |
+
Q12876
|
513 |
+
Q112805200
|
514 |
+
Q2514663
|
515 |
+
Q1308978
|
516 |
+
Q192795
|
517 |
+
Q1867507
|
518 |
+
Q1088
|
519 |
+
Q3649129
|
520 |
+
Q18573407
|
521 |
+
Q11898832
|
522 |
+
Q63769412
|
523 |
+
Q45912917
|
524 |
+
Q182849
|
525 |
+
Q330190
|
526 |
+
Q120997
|
527 |
+
Q40015
|
528 |
+
Q18113858
|
529 |
+
Q234460
|
530 |
+
Q106619054
|
531 |
+
Q81938
|
532 |
+
Q9690
|
533 |
+
Q7367
|
534 |
+
Q26256512
|
535 |
+
Q26359826
|
536 |
+
Q1334805
|
537 |
+
Q133235
|
538 |
+
Q3380760
|
539 |
+
Q641118
|
540 |
+
Q24245823
|
541 |
+
Q54453625
|
542 |
+
Q48816342
|
543 |
+
Q2001588
|
544 |
+
Q1928899
|
545 |
+
Q489157
|
546 |
+
Q168639
|
547 |
+
Q62562253
|
548 |
+
Q1248784
|
549 |
+
Q778384
|
550 |
+
Q605035
|
551 |
+
Q1210093
|
552 |
+
Q151885
|
553 |
+
Q15838080
|
554 |
+
Q104813442
|
555 |
+
Q46335
|
556 |
+
Q81707
|
557 |
+
Q107383247
|
558 |
+
Q79007
|
559 |
+
Q1068107
|
560 |
+
Q2827871
|
561 |
+
Q1755355
|
562 |
+
Q210112
|
563 |
+
Q355304
|
564 |
+
Q2364697
|
565 |
+
Q11639276
|
566 |
+
Q4409456
|
567 |
+
Q47508768
|
568 |
+
Q10858674
|
569 |
+
Q190478
|
570 |
+
Q201959
|
571 |
+
Q834007
|
572 |
+
Q131172
|
573 |
+
Q496380
|
574 |
+
Q4989906
|
575 |
+
Q4262
|
576 |
+
Q177923
|
577 |
+
Q11471
|
578 |
+
Q48282
|
579 |
+
Q36864
|
580 |
+
Q5185279
|
581 |
+
Q79935565
|
582 |
+
Q29838581
|
583 |
+
Q51377271
|
584 |
+
Q1148747
|
585 |
+
Q40858
|
586 |
+
Q21190816
|
587 |
+
Q50000
|
588 |
+
Q109507868
|
589 |
+
Q73006538
|
590 |
+
Q1521410
|
591 |
+
Q821952
|
592 |
+
Q47462850
|
593 |
+
Q173056
|
594 |
+
Q3010205
|
595 |
+
Q1247867
|
596 |
+
Q182155
|
597 |
+
Q781
|
598 |
+
Q256458
|
599 |
+
Q190139
|
600 |
+
Q61071643
|
601 |
+
Q508291
|
602 |
+
Q1073656
|
603 |
+
Q6460735
|
604 |
+
Q38933
|
605 |
+
Q39816
|
606 |
+
Q7377
|
607 |
+
Q6028924
|
608 |
+
Q131512
|
609 |
+
Q2424752
|
610 |
+
Q1498298
|
611 |
+
Q46311
|
612 |
+
Q160695
|
613 |
+
Q2845
|
614 |
+
Q81240
|
615 |
+
Q386905
|
616 |
+
Q2047589
|
617 |
+
Q3196
|
618 |
+
Q18335
|
619 |
+
Q2727213
|
620 |
+
Q47263
|
621 |
+
Q25894
|
622 |
+
Q3241972
|
623 |
+
Q1997
|
624 |
+
Q326277
|
625 |
+
Q11994045
|
626 |
+
Q37555509
|
627 |
+
Q14403
|
628 |
+
Q2995529
|
629 |
+
Q105428070
|
630 |
+
Q131696
|
631 |
+
Q74424273
|
632 |
+
Q37540140
|
633 |
+
Q1799866
|
634 |
+
Q200538
|
635 |
+
Q2645227
|
636 |
+
Q255722
|
637 |
+
Q2570643
|
638 |
+
Q18031357
|
639 |
+
Q127933
|
640 |
+
Q4290
|
641 |
+
Q171558
|
642 |
+
Q1866689
|
643 |
+
Q30100868
|
644 |
+
Q37828
|
645 |
+
Q1780863
|
646 |
+
Q12970360
|
647 |
+
Q1183543
|
648 |
+
Q46831
|
649 |
+
Q198
|
650 |
+
Q1105534
|
651 |
+
Q21171262
|
652 |
+
Q386854
|
653 |
+
Q18237485
|
654 |
+
Q1368
|
655 |
+
Q4173974
|
656 |
+
Q8104
|
657 |
+
Q182458
|
658 |
+
Q1056396
|
659 |
+
Q1426795
|
660 |
+
Q2063640
|
661 |
+
Q380933
|
662 |
+
Q2486664
|
663 |
+
Q1937716
|
664 |
+
Q23834
|
665 |
+
Q84
|
666 |
+
Q36641511
|
667 |
+
Q11032
|
668 |
+
Q1947892
|
669 |
+
Q290178
|
670 |
+
Q101761
|
671 |
+
Q4022
|
672 |
+
Q7140693
|
673 |
+
Q446
|
674 |
+
Q3216816
|
675 |
+
Q1066536
|
676 |
+
Q38926
|
677 |
+
Q4421
|
678 |
+
Q5432619
|
679 |
+
Q7562091
|
680 |
+
Q1006733
|
681 |
+
Q2011889
|
682 |
+
Q1914636
|
683 |
+
Q2022532
|
684 |
+
Q1379116
|
685 |
+
Q831691
|
686 |
+
Q4604
|
687 |
+
Q43059
|
688 |
+
Q20755687
|
689 |
+
Q4917
|
690 |
+
Q32738
|
691 |
+
Q106106
|
692 |
+
Q173799
|
693 |
+
Q126017
|
694 |
+
Q77073841
|
695 |
+
Q317088
|
696 |
+
Q5
|
697 |
+
Q11587
|
698 |
+
Q28803
|
699 |
+
Q121769
|
700 |
+
Q14745
|
701 |
+
Q188828
|
702 |
+
Q160120
|
703 |
+
Q2748405
|
704 |
+
Q1746015
|
705 |
+
Q1305037
|
706 |
+
Q1401371
|
707 |
+
Q160070
|
708 |
+
Q492768
|
709 |
+
Q1073
|
710 |
+
Q7743
|
711 |
+
Q1310239
|
712 |
+
Q3535686
|
713 |
+
Q83790
|
714 |
+
Q208364
|
715 |
+
Q840396
|
716 |
+
Q59002477
|
717 |
+
Q11469
|
718 |
+
Q350176
|
719 |
+
Q43091
|
720 |
+
Q16917
|
721 |
+
Q57052
|
722 |
+
Q182832
|
723 |
+
Q22889
|
724 |
+
Q107262066
|
725 |
+
Q76768
|
726 |
+
Q170544
|
727 |
+
Q1424833
|
728 |
+
Q133279
|
729 |
+
Q212989
|
730 |
+
Q33260112
|
731 |
+
Q86642263
|
732 |
+
Q185245
|
733 |
+
Q190771
|
734 |
+
Q4229435
|
735 |
+
Q843589
|
736 |
+
Q1344
|
737 |
+
Q199657
|
738 |
+
Q667982
|
739 |
+
Q643546
|
740 |
+
Q50690
|
741 |
+
Q5413
|
742 |
+
Q211198
|
743 |
+
Q11426
|
744 |
+
Q12271
|
745 |
+
Q35808
|
746 |
+
Q7188
|
747 |
+
Q181394
|
748 |
+
Q3950
|
749 |
+
Q37319371
|
750 |
+
Q13189
|
751 |
+
Q121359
|
752 |
+
Q9649
|
753 |
+
Q43015
|
754 |
+
Q161439
|
755 |
+
Q937228
|
756 |
+
Q11427
|
757 |
+
Q2105114
|
758 |
+
Q1390
|
759 |
+
Q1107811
|
760 |
+
Q3966
|
761 |
+
Q14890
|
762 |
+
Q12162227
|
763 |
+
Q31948
|
764 |
+
Q366
|
765 |
+
Q11582
|
766 |
+
Q1937808
|
767 |
+
Q331769
|
768 |
+
Q532
|
769 |
+
Q79871
|
770 |
+
Q905151
|
771 |
+
Q7994710
|
772 |
+
Q18153484
|
773 |
+
Q11326182
|
774 |
+
Q15989253
|
775 |
+
Q106765930
|
776 |
+
Q2301186
|
777 |
+
Q779
|
778 |
+
Q76664785
|
779 |
+
Q157017
|
780 |
+
Q8016240
|
781 |
+
Q3345385
|
782 |
+
Q649
|
783 |
+
Q670
|
784 |
+
Q5994
|
785 |
+
Q159
|
786 |
+
Q192628
|
787 |
+
Q75520
|
788 |
+
Q2934
|
789 |
+
Q36814998
|
790 |
+
Q1297322
|
791 |
+
Q5003624
|
792 |
+
Q8928
|
793 |
+
Q193762
|
794 |
+
Q178692
|
795 |
+
Q208417
|
796 |
+
Q2028499
|
797 |
+
Q82955
|
798 |
+
Q1357761
|
799 |
+
Q194195
|
800 |
+
Q86135347
|
801 |
+
Q34679
|
802 |
+
Q13428690
|
803 |
+
Q16835776
|
804 |
+
Q1207302
|
805 |
+
Q501862
|
806 |
+
Q16528
|
807 |
+
Q131269
|
808 |
+
Q3314483
|
809 |
+
Q1107656
|
810 |
+
Q20665666
|
811 |
+
Q19973
|
812 |
+
Q899277
|
813 |
+
Q752392
|
814 |
+
Q223722
|
815 |
+
Q650711
|
816 |
+
Q197
|
817 |
+
Q1198887
|
818 |
+
Q41607
|
819 |
+
Q186263
|
820 |
+
Q283202
|
821 |
+
Q103312200
|
822 |
+
Q214609
|
823 |
+
Q104778027
|
824 |
+
Q132241
|
825 |
+
Q5283295
|
826 |
+
Q96326026
|
827 |
+
Q178559
|
828 |
+
Q34704992
|
829 |
+
Q111122056
|
830 |
+
Q1414816
|
831 |
+
Q184755
|
832 |
+
Q5249659
|
833 |
+
Q16952
|
834 |
+
Q2824657
|
835 |
+
Q60528728
|
836 |
+
Q5462027
|
837 |
+
Q1186710
|
838 |
+
Q51379512
|
839 |
+
Q35765
|
840 |
+
Q4
|
841 |
+
Q8805
|
842 |
+
Q65375807
|
843 |
+
Q6657015
|
844 |
+
Q107425
|
845 |
+
Q189838
|
846 |
+
Q5157576
|
847 |
+
Q29017603
|
848 |
+
Q79030196
|
849 |
+
Q194189
|
850 |
+
Q177749
|
851 |
+
Q333291
|
852 |
+
Q4895508
|
853 |
+
Q5926364
|
854 |
+
Q1083709
|
855 |
+
Q30092769
|
856 |
+
Q27898977
|
857 |
+
Q57598
|
858 |
+
Q37211094
|
859 |
+
Q6073879
|
860 |
+
Q201294
|
861 |
+
Q169545
|
862 |
+
Q31839438
|
863 |
+
Q12139612
|
864 |
+
Q22671
|
865 |
+
Q11019
|
866 |
+
Q1151752
|
867 |
+
Q468402
|
868 |
+
Q1550225
|
869 |
+
Q202251
|
870 |
+
Q222249
|
871 |
+
Q3367000
|
872 |
+
Q672
|
873 |
+
Q12204
|
874 |
+
Q3947
|
875 |
+
Q42527
|
876 |
+
Q6452640
|
877 |
+
Q47542
|
878 |
+
Q207326
|
879 |
+
Q83267
|
880 |
+
Q1056901
|
881 |
+
Q593676
|
882 |
+
Q606332
|
883 |
+
Q35473
|
884 |
+
Q44167
|
885 |
+
Q11796413
|
886 |
+
Q8492
|
887 |
+
Q38942
|
888 |
+
Q21491451
|
889 |
+
Q1503716
|
890 |
+
Q71003196
|
891 |
+
Q7884320
|
892 |
+
Q1503211
|
893 |
+
Q2425052
|
894 |
+
Q108163
|
895 |
+
Q1367
|
896 |
+
Q3984767
|
897 |
+
Q309100
|
898 |
+
Q167382
|
899 |
+
Q206021
|
900 |
+
Q58401
|
901 |
+
Q185598
|
902 |
+
Q366371
|
903 |
+
Q227936
|
904 |
+
Q622662
|
905 |
+
Q1865281
|
906 |
+
Q17039022
|
907 |
+
Q44104
|
908 |
+
Q27067578
|
909 |
+
Q107196737
|
910 |
+
Q210064
|
911 |
+
Q15343
|
912 |
+
Q542
|
913 |
+
Q1751429
|
914 |
+
Q245359
|
915 |
+
Q16254265
|
916 |
+
Q8331
|
917 |
+
Q13417200
|
918 |
+
Q110014844
|
919 |
+
Q152247
|
920 |
+
Q240313
|
921 |
+
Q3
|
922 |
+
Q57616098
|
923 |
+
Q1265533
|
924 |
+
Q668
|
925 |
+
Q43013
|
926 |
+
Q8094
|
927 |
+
Q326301
|
928 |
+
Q39074527
|
929 |
+
Q12483
|
930 |
+
Q6256
|
931 |
+
Q61022630
|
932 |
+
Q1990010
|
933 |
+
Q51036317
|
934 |
+
Q2517117
|
935 |
+
Q708514
|
936 |
+
Q1141231
|
937 |
+
Q203789
|
938 |
+
Q1913301
|
939 |
+
Q11379
|
940 |
+
Q1211427
|
941 |
+
Q229385
|
942 |
+
Q899625
|
943 |
+
Q36794
|
944 |
+
Q999646
|
945 |
+
Q894231
|
946 |
+
Q16001535
|
947 |
+
Q5281334
|
948 |
+
Q376
|
949 |
+
Q3010
|
950 |
+
Q13377687
|
951 |
+
Q60300035
|
952 |
+
Q5135520
|
953 |
+
Q780
|
954 |
+
Q134041
|
955 |
+
Q546191
|
956 |
+
Q13405640
|
957 |
+
Q7560
|
958 |
+
Q7868
|
959 |
+
Q8502
|
960 |
+
Q40050
|
961 |
+
Q207766
|
962 |
+
Q324120
|
963 |
+
Q35694
|
964 |
+
Q188748
|
965 |
+
Q19100
|
966 |
+
Q49776
|
967 |
+
Q244330
|
968 |
+
Q14384
|
969 |
+
Q186819
|
970 |
+
Q140
|
971 |
+
Q11285759
|
972 |
+
Q646426
|
973 |
+
Q3972943
|
974 |
+
Q20134
|
975 |
+
Q2984138
|
976 |
+
Q1384981
|
977 |
+
Q16321420
|
978 |
+
Q107197071
|
979 |
+
Q175185
|
980 |
+
Q887540
|
981 |
+
Q130693
|
982 |
+
Q49007
|
983 |
+
Q7991
|
984 |
+
Q430
|
985 |
+
Q605384
|
986 |
+
Q2734060
|
987 |
+
Q709099
|
988 |
+
Q3133
|
989 |
+
Q191552
|
990 |
+
Q740910
|
991 |
+
Q384593
|
992 |
+
Q192056
|
993 |
+
Q667
|
994 |
+
Q638
|
995 |
+
Q739302
|
996 |
+
Q16881915
|
997 |
+
Q177777
|
998 |
+
Q97027313
|
999 |
+
Q641
|
1000 |
+
Q19211
|
1001 |
+
Q283
|
1002 |
+
Q107196431
|
1003 |
+
Q131257
|
1004 |
+
Q63676707
|
1005 |
+
Q7802
|
1006 |
+
Q208450
|
1007 |
+
Q18035603
|
1008 |
+
Q56736680
|
1009 |
+
Q168432
|
1010 |
+
Q3241121
|
1011 |
+
Q112112091
|
1012 |
+
Q11723795
|
1013 |
+
Q25235
|
1014 |
+
Q110081157
|
1015 |
+
Q1187930
|
1016 |
+
Q192152
|
1017 |
+
Q2221893
|
1018 |
+
Q913999
|
1019 |
+
Q64572893
|
1020 |
+
Q68
|
1021 |
+
Q37097368
|
1022 |
+
Q2112073
|
1023 |
+
Q20077244
|
1024 |
+
Q3100542
|
1025 |
+
Q12731
|
1026 |
+
Q40178
|
1027 |
+
Q102496
|
1028 |
+
Q184197
|
1029 |
+
Q27135598
|
1030 |
+
Q223044
|
1031 |
+
Q12739
|
1032 |
+
Q728
|
1033 |
+
Q80083
|
1034 |
+
Q50824047
|
1035 |
+
Q13430821
|
1036 |
+
Q913
|
1037 |
+
Q31374404
|
1038 |
+
Q14660
|
1039 |
+
Q991202
|
1040 |
+
Q8686
|
1041 |
+
Q48428
|
1042 |
+
Q5638
|
1043 |
+
Q1321370
|
1044 |
+
Q12898216
|
1045 |
+
Q5410500
|
1046 |
+
Q2066131
|
1047 |
+
Q22261015
|
1048 |
+
Q170584
|
1049 |
+
Q1807128
|
1050 |
+
Q693464
|
1051 |
+
Q194433
|
1052 |
+
Q7239
|
1053 |
+
Q5078274
|
1054 |
+
Q169534
|
1055 |
+
Q140565
|
1056 |
+
Q1385033
|
1057 |
+
Q7239486
|
1058 |
+
Q652698
|
1059 |
+
Q1424519
|
1060 |
+
Q48885552
|
1061 |
+
Q11035
|
1062 |
+
Q201664
|
1063 |
+
Q1365641
|
1064 |
+
Q46988452
|
1065 |
+
Q133492
|
1066 |
+
Q2798912
|
1067 |
+
Q179448
|
1068 |
+
Q7364
|
1069 |
+
Q191067
|
1070 |
+
Q10978
|
1071 |
+
Q1121708
|
1072 |
+
Q8065
|
1073 |
+
Q11435
|
1074 |
+
Q128393
|
1075 |
+
Q849816
|
1076 |
+
Q175089
|
1077 |
+
Q2332346
|
1078 |
+
Q34442
|
1079 |
+
Q12192
|
1080 |
+
Q44142
|
1081 |
+
Q15686806
|
1082 |
+
Q15760439
|
1083 |
+
Q16157710
|
1084 |
+
Q1138737
|
1085 |
+
Q12202
|
1086 |
+
Q7540126
|
1087 |
+
Q211748
|
1088 |
+
Q290691
|
1089 |
+
Q11190
|
1090 |
+
Q157811
|
1091 |
+
Q81009
|
1092 |
+
Q2409
|
1093 |
+
Q870
|
1094 |
+
Q59618763
|
1095 |
+
Q679
|
1096 |
+
Q628674
|
1097 |
+
Q80228
|
1098 |
+
Q40089
|
1099 |
+
Q53865327
|
1100 |
+
Q33979
|
1101 |
+
Q2941721
|
1102 |
+
Q830393
|
1103 |
+
Q64374257
|
1104 |
+
Q7245047
|
1105 |
+
Q3031
|
1106 |
+
Q937
|
1107 |
+
Q6084258
|
1108 |
+
Q111029
|
1109 |
+
Q11957145
|
1110 |
+
Q79137673
|
1111 |
+
Q330284
|
1112 |
+
Q17052147
|
1113 |
+
Q7362
|
1114 |
+
Q477248
|
1115 |
+
Q784445
|
1116 |
+
Q17285
|
1117 |
+
Q110628325
|
1118 |
+
Q172
|
1119 |
+
Q31920
|
1120 |
+
Q476807
|
1121 |
+
Q18245643
|
1122 |
+
Q911076
|
1123 |
+
Q154558
|
1124 |
+
Q28472
|
1125 |
+
Q72128824
|
1126 |
+
Q17
|
1127 |
+
Q42177
|
1128 |
+
Q1069725
|
1129 |
+
Q102187260
|
1130 |
+
Q10884
|
1131 |
+
Q1932016
|
1132 |
+
Q34706
|
1133 |
+
Q111725985
|
1134 |
+
Q2003356
|
1135 |
+
Q152810
|
1136 |
+
Q184453
|
1137 |
+
Q77002510
|
1138 |
+
Q133182
|
1139 |
+
Q202064
|
1140 |
+
Q157002
|
1141 |
+
Q1339862
|
1142 |
+
Q1406070
|
1143 |
+
Q214169
|
1144 |
+
Q12916
|
1145 |
+
Q742168
|
1146 |
+
Q497903
|
1147 |
+
Q95566669
|
1148 |
+
Q180538
|
1149 |
+
Q66688988
|
1150 |
+
Q15814324
|
1151 |
+
Q1090
|
1152 |
+
Q929848
|
1153 |
+
Q15026
|
1154 |
+
Q483110
|
1155 |
+
Q4439
|
1156 |
+
Q134205
|
1157 |
+
Q482994
|
1158 |
+
Q39908
|
1159 |
+
Q698996
|
1160 |
+
Q8063
|
1161 |
+
Q918385
|
1162 |
+
Q3629144
|
1163 |
+
Q1154914
|
1164 |
+
Q3565037
|
1165 |
+
Q954087
|
1166 |
+
Q623
|
1167 |
+
Q8923
|
1168 |
+
Q15816392
|
1169 |
+
Q66571844
|
1170 |
+
Q16970
|
1171 |
+
Q1444
|
1172 |
+
Q191924
|
1173 |
+
Q149566
|
1174 |
+
Q44946
|
1175 |
+
Q1827
|
1176 |
+
Q28452346
|
1177 |
+
Q879844
|
1178 |
+
Q124282
|
1179 |
+
Q16529344
|
1180 |
+
Q421744
|
1181 |
+
Q4164344
|
1182 |
+
Q19939
|
1183 |
+
Q2102
|
1184 |
+
Q32489
|
1185 |
+
Q315247
|
1186 |
+
Q408
|
1187 |
+
Q64141914
|
1188 |
+
Q2303322
|
1189 |
+
Q889503
|
1190 |
+
Q3246832
|
1191 |
+
Q29710539
|
1192 |
+
Q2155636
|
1193 |
+
Q62128996
|
1194 |
+
Q27964852
|
1195 |
+
Q677
|
1196 |
+
Q3176558
|
1197 |
+
Q184421
|
1198 |
+
Q3210331
|
1199 |
+
Q16944487
|
1200 |
+
Q11004
|
1201 |
+
Q234901
|
1202 |
+
Q1403016
|
1203 |
+
Q34770
|
1204 |
+
Q43183
|
1205 |
+
Q11748378
|
1206 |
+
Q11880006
|
1207 |
+
Q190878
|
1208 |
+
Q2615500
|
1209 |
+
Q40956
|
1210 |
+
Q15310171
|
1211 |
+
Q691310
|
1212 |
+
Q489703
|
1213 |
+
Q16960397
|
1214 |
+
Q31207
|
1215 |
+
Q205555
|
1216 |
+
Q33999
|
1217 |
+
Q44299
|
1218 |
+
Q2392887
|
1219 |
+
Q82001
|
1220 |
+
Q192935
|
1221 |
+
Q81727
|
1222 |
+
Q217446
|
1223 |
+
Q147538
|
1224 |
+
Q15783
|
1225 |
+
Q107326062
|
1226 |
+
Q191118
|
1227 |
+
Q956
|
1228 |
+
Q273176
|
1229 |
+
Q5282225
|
1230 |
+
Q34749
|
1231 |
+
Q105549747
|
1232 |
+
Q3553322
|
1233 |
+
Q112230559
|
1234 |
+
Q5088855
|
1235 |
+
Q182060
|
1236 |
+
Q3769186
|
1237 |
+
Q6060613
|
1238 |
+
Q7397
|
1239 |
+
Q23852
|
1240 |
+
Q4918
|
1241 |
+
Q749316
|
1242 |
+
Q23069713
|
1243 |
+
Q729
|
1244 |
+
Q313549
|
1245 |
+
Q2248623
|
1246 |
+
Q8495
|
1247 |
+
Q600262
|
1248 |
+
Q29256
|
1249 |
+
Q89200784
|
1250 |
+
Q166231
|
1251 |
+
Q323808
|
1252 |
+
Q47107
|
1253 |
+
Q231250
|
1254 |
+
Q2249676
|
1255 |
+
Q160117
|
1256 |
+
Q104641
|
1257 |
+
Q1542661
|
1258 |
+
Q364
|
1259 |
+
Q527
|
1260 |
+
Q1125955
|
1261 |
+
Q476300
|
1262 |
+
Q217127
|
1263 |
+
Q43164
|
1264 |
+
Q1075
|
1265 |
+
Q106526
|
1266 |
+
Q69581
|
1267 |
+
Q2068602
|
1268 |
+
Q1323314
|
1269 |
+
Q102227442
|
1270 |
+
Q1371819
|
1271 |
+
Q373342
|
1272 |
+
Q8070
|
1273 |
+
Q3067815
|
1274 |
+
Q28007056
|
1275 |
+
Q102798
|
1276 |
+
Q170877
|
1277 |
+
Q96652354
|
1278 |
+
Q83405
|
1279 |
+
Q11196749
|
1280 |
+
Q42804
|
1281 |
+
Q11453
|
1282 |
+
Q3489000
|
1283 |
+
Q1155772
|
1284 |
+
Q137056
|
1285 |
+
Q8253
|
1286 |
+
Q10843872
|
1287 |
+
Q104493
|
1288 |
+
Q343546
|
1289 |
+
Q11081619
|
1290 |
+
Q107356532
|
1291 |
+
Q21004260
|
1292 |
+
Q11554381
|
1293 |
+
Q15724995
|
1294 |
+
Q827792
|
1295 |
+
Q170494
|
1296 |
+
Q12385831
|
1297 |
+
Q37681
|
1298 |
+
Q145
|
1299 |
+
Q316
|
1300 |
+
Q7017933
|
1301 |
+
Q39546
|
1302 |
+
Q7949
|
1303 |
+
Q2718084
|
1304 |
+
Q2225
|
1305 |
+
Q213753
|
1306 |
+
Q47496130
|
1307 |
+
Q3685258
|
1308 |
+
Q913572
|
1309 |
+
Q2
|
1310 |
+
Q666412
|
1311 |
+
Q61509
|
1312 |
+
Q81513
|
1313 |
+
Q48
|
1314 |
+
Q46913
|
1315 |
+
Q174782
|
1316 |
+
Q653318
|
1317 |
+
Q319899
|
1318 |
+
Q290716
|
1319 |
+
Q131524
|
1320 |
+
Q735
|
1321 |
+
Q32789
|
1322 |
+
Q2399307
|
1323 |
+
Q152088
|
1324 |
+
Q681515
|
1325 |
+
Q207690
|
1326 |
+
Q1410600
|
1327 |
+
Q13360264
|
1328 |
+
Q1053956
|
1329 |
+
Q110014643
|
1330 |
+
Q20817212
|
1331 |
+
Q12206
|
1332 |
+
Q272002
|
1333 |
+
Q639669
|
1334 |
+
Q193837
|
1335 |
+
Q7368
|
1336 |
+
Q179076
|
1337 |
+
Q177220
|
1338 |
+
Q17297777
|
1339 |
+
Q11235817
|
1340 |
+
Q18378865
|
1341 |
+
Q1192354
|
1342 |
+
Q8148
|
1343 |
+
Q6097
|
1344 |
+
Q2699803
|
1345 |
+
Q95685937
|
1346 |
+
Q11446
|
1347 |
+
Q10711575
|
1348 |
+
Q925
|
1349 |
+
Q18245166
|
1350 |
+
Q845069
|
1351 |
+
Q3389076
|
1352 |
+
Q7291
|
1353 |
+
Q1400734
|
1354 |
+
Q160464
|
1355 |
+
Q107519268
|
1356 |
+
Q3305213
|
1357 |
+
Q12047696
|
1358 |
+
Q189299
|
1359 |
+
Q70330436
|
1360 |
+
Q915366
|
1361 |
+
Q590111
|
1362 |
+
Q29051769
|
1363 |
+
Q2581003
|
1364 |
+
Q10841757
|
1365 |
+
Q50817452
|
1366 |
+
Q27499098
|
1367 |
+
Q2362573
|
1368 |
+
Q18123008
|
1369 |
+
Q83180
|
1370 |
+
Q7829561
|
1371 |
+
Q7944
|
1372 |
+
Q192296
|
1373 |
+
Q556
|
1374 |
+
Q33602
|
1375 |
+
Q23664
|
1376 |
+
Q93352
|
1377 |
+
Q64
|
1378 |
+
Q24384
|
1379 |
+
Q78948116
|
1380 |
+
Q11438
|
1381 |
+
Q110916833
|
1382 |
+
Q17517
|
1383 |
+
Q10987
|
1384 |
+
Q10670181
|
1385 |
+
Q483426
|
1386 |
+
Q306484
|
1387 |
+
Q309
|
1388 |
+
Q5454629
|
1389 |
+
Q1439311
|
1390 |
+
Q2159907
|
1391 |
+
Q9842
|
1392 |
+
Q3914
|
1393 |
+
Q118155
|
1394 |
+
Q7391
|
1395 |
+
Q167270
|
1396 |
+
Q842096
|
1397 |
+
Q40218
|
1398 |
+
Q35831
|
1399 |
+
Q4232578
|
1400 |
+
Q15116915
|
1401 |
+
Q17089828
|
1402 |
+
Q81025
|
1403 |
+
Q45354
|
1404 |
+
Q16502
|
1405 |
+
Q385378
|
1406 |
+
Q44497
|
1407 |
+
Q872
|
1408 |
+
Q1929383
|
1409 |
+
Q3499072
|
1410 |
+
Q15332388
|
1411 |
+
Q50030
|
1412 |
+
Q219174
|
1413 |
+
Q19625
|
1414 |
+
Q1342
|
1415 |
+
Q1760704
|
1416 |
+
Q924220
|
1417 |
+
Q7275
|
1418 |
+
Q12514
|
1419 |
+
Q46384
|
1420 |
+
Q102104911
|
1421 |
+
Q1165788
|
1422 |
+
Q12337193
|
1423 |
+
Q67932942
|
1424 |
+
Q221656
|
1425 |
+
Q14092
|
1426 |
+
Q66741662
|
1427 |
+
Q160289
|
1428 |
+
Q36602
|
1429 |
+
Q622988
|
1430 |
+
Q4311765
|
1431 |
+
Q3469818
|
1432 |
+
Q85574465
|
1433 |
+
Q1756348
|
1434 |
+
Q131186
|
1435 |
+
Q154166
|
1436 |
+
Q84426668
|
1437 |
+
Q3850736
|
1438 |
+
Q13099607
|
1439 |
+
Q663
|
1440 |
+
Q8021345
|
1441 |
+
Q45530615
|
1442 |
+
Q11424
|
1443 |
+
Q317158
|
1444 |
+
Q726306
|
1445 |
+
Q1864008
|
1446 |
+
Q41487
|
1447 |
+
Q39266
|
1448 |
+
Q12372598
|
1449 |
+
Q82580
|
1450 |
+
Q1207505
|
1451 |
+
Q638608
|
1452 |
+
Q23390
|
1453 |
+
Q11016
|
1454 |
+
Q2207370
|
1455 |
+
Q131790
|
1456 |
+
Q1153484
|
1457 |
+
Q245117
|
1458 |
+
Q161736
|
1459 |
+
Q51974
|
1460 |
+
Q1975652
|
1461 |
+
Q182940
|
1462 |
+
Q920915
|
1463 |
+
Q76299
|
1464 |
+
Q108
|
1465 |
+
Q2314
|
1466 |
+
Q21201
|
1467 |
+
Q758780
|
1468 |
+
Q17428119
|
1469 |
+
Q1921606
|
1470 |
+
Q2135977
|
1471 |
+
Q349
|
1472 |
+
Q13317
|
1473 |
+
Q9200127
|
1474 |
+
Q30456678
|
1475 |
+
Q718113
|
1476 |
+
Q9614
|
1477 |
+
Q61480
|
1478 |
+
Q822282
|
1479 |
+
Q1581308
|
1480 |
+
Q2334804
|
1481 |
+
Q153988
|
1482 |
+
Q80071
|
1483 |
+
Q1299714
|
1484 |
+
Q37537637
|
1485 |
+
Q1470363
|
1486 |
+
Q920312
|
1487 |
+
Q179157
|
1488 |
+
Q455550
|
1489 |
+
Q42962
|
1490 |
+
Q11663
|
1491 |
+
Q8
|
1492 |
+
Q35872
|
1493 |
+
Q232191
|
1494 |
+
Q235544
|
1495 |
+
Q9081
|
1496 |
+
Q58968
|
1497 |
+
Q178193
|
1498 |
+
Q7313
|
1499 |
+
Q79701
|
1500 |
+
Q335101
|
1501 |
+
Q573
|
1502 |
+
Q1385709
|
1503 |
+
Q69693864
|
1504 |
+
Q9730
|
1505 |
+
Q189004
|
1506 |
+
Q12121859
|
1507 |
+
Q50386808
|
1508 |
+
Q334600
|
1509 |
+
Q23640
|
1510 |
+
Q4575936
|
1511 |
+
Q108566
|
1512 |
+
Q3304003
|
1513 |
+
Q143828
|
1514 |
+
Q1196129
|
1515 |
+
Q108325
|
1516 |
+
Q2132510
|
1517 |
+
Q726
|
1518 |
+
Q9387
|
1519 |
+
Q18250984
|
1520 |
+
Q23915873
|
1521 |
+
Q127771
|
1522 |
+
Q207694
|
1523 |
+
Q1871151
|
1524 |
+
Q4010255
|
1525 |
+
Q851415
|
1526 |
+
Q176483
|
1527 |
+
Q1097859
|
1528 |
+
Q80294
|
1529 |
+
Q217541
|
1530 |
+
Q7987
|
1531 |
+
Q35666
|
1532 |
+
Q99427841
|
1533 |
+
Q11570
|
1534 |
+
Q1437299
|
1535 |
+
Q2238184
|
1536 |
+
Q3695082
|
1537 |
+
Q46847
|
1538 |
+
Q1940914
|
1539 |
+
Q53716741
|
1540 |
+
Q64365
|
1541 |
+
Q11002
|
1542 |
+
Q9415
|
1543 |
+
Q28128222
|
1544 |
+
Q178805
|
1545 |
+
Q273318
|
1546 |
+
Q2416562
|
1547 |
+
Q81163
|
1548 |
+
Q5574826
|
1549 |
+
Q787
|
1550 |
+
Q204
|
1551 |
+
Q1554231
|
1552 |
+
Q17598913
|
1553 |
+
Q165044
|
1554 |
+
Q3142
|
1555 |
+
Q11457
|
1556 |
+
Q4991371
|
1557 |
+
Q4683829
|
1558 |
+
Q215627
|
1559 |
+
Q7434
|
1560 |
+
Q593644
|
1561 |
+
Q37262525
|
1562 |
+
Q11946202
|
1563 |
+
Q8425
|
1564 |
+
Q1127306
|
1565 |
+
Q180470
|
1566 |
+
Q61882239
|
1567 |
+
Q38867
|
1568 |
+
Q8171
|
1569 |
+
Q47146337
|
1570 |
+
Q2160801
|
1571 |
+
Q161210
|
1572 |
+
Q25212061
|
1573 |
+
Q235356
|
1574 |
+
Q12147
|
1575 |
+
Q216059
|
1576 |
+
Q5090
|
1577 |
+
Q89198120
|
1578 |
+
Q2116228
|
1579 |
+
Q858485
|
1580 |
+
Q39558
|
1581 |
+
Q336
|
1582 |
+
Q107383235
|
1583 |
+
Q265158
|
1584 |
+
Q16281769
|
1585 |
+
Q1144286
|
1586 |
+
Q34604447
|
1587 |
+
Q11442
|
1588 |
+
Q194105
|
1589 |
+
Q27334842
|
1590 |
+
Q83310
|
1591 |
+
Q93727271
|
1592 |
+
Q929
|
1593 |
+
Q4593291
|
1594 |
+
Q11024
|
1595 |
+
Q1569314
|
1596 |
+
Q1199715
|
1597 |
+
Q7590
|
1598 |
+
Q42861
|
1599 |
+
Q11020
|
1600 |
+
Q9779
|
1601 |
+
Q2357358
|
1602 |
+
Q12453
|
1603 |
+
Q42622
|
1604 |
+
Q7692360
|
1605 |
+
Q11423
|
1606 |
+
Q1616075
|
1607 |
+
Q2141879
|
1608 |
+
Q65088609
|
1609 |
+
Q1117001
|
1610 |
+
Q657449
|
1611 |
+
Q171076
|
1612 |
+
Q16
|
1613 |
+
Q332798
|
1614 |
+
Q11781028
|
1615 |
+
Q19269277
|
1616 |
+
Q108840195
|
1617 |
+
Q6000365
|
1618 |
+
Q276173
|
1619 |
+
Q3561314
|
1620 |
+
Q21075684
|
1621 |
+
Q30013662
|
1622 |
+
Q8161
|
1623 |
+
Q503968
|
1624 |
+
Q1420
|
1625 |
+
Q764
|
1626 |
+
Q1318054
|
1627 |
+
Q2095
|
1628 |
+
Q1185607
|
1629 |
+
Q37707
|
1630 |
+
Q3074482
|
1631 |
+
Q2811
|
1632 |
+
Q865564
|
1633 |
+
Q1144928
|
1634 |
+
Q21096985
|
1635 |
+
Q36539
|
1636 |
+
Q2570370
|
1637 |
+
Q5849500
|
1638 |
+
Q93189
|
1639 |
+
Q131841
|
1640 |
+
Q7504315
|
1641 |
+
Q27813916
|
1642 |
+
Q36247
|
1643 |
+
Q180516
|
1644 |
+
Q10850
|
1645 |
+
Q55691459
|
1646 |
+
Q187934
|
1647 |
+
Q60346683
|
1648 |
+
Q13377214
|
1649 |
+
Q587735
|
1650 |
+
Q168658
|
1651 |
+
Q18785956
|
1652 |
+
Q131154
|
1653 |
+
Q1249178
|
1654 |
+
Q1088223
|
1655 |
+
Q2750057
|
1656 |
+
Q40348
|
1657 |
+
Q715284
|
1658 |
+
Q204664
|
1659 |
+
Q35535
|
1660 |
+
Q167987
|
1661 |
+
Q43193
|
1662 |
+
Q465570
|
1663 |
+
Q280658
|
1664 |
+
Q169940
|
1665 |
+
Q7430330
|
1666 |
+
Q60960
|
1667 |
+
Q1889932
|
1668 |
+
Q169207
|
1669 |
+
Q19801756
|
1670 |
+
Q188507
|
1671 |
+
Q571
|
1672 |
+
Q1150771
|
1673 |
+
Q58734
|
1674 |
+
Q170579
|
1675 |
+
Q89
|
1676 |
+
Q4323994
|
1677 |
+
Q369012
|
1678 |
+
Q467
|
1679 |
+
Q215380
|
1680 |
+
Q22731
|
1681 |
+
Q11460
|
1682 |
+
Q1355
|
1683 |
+
Q758
|
1684 |
+
Q36611
|
1685 |
+
Q4126704
|
1686 |
+
Q8068
|
1687 |
+
Q1313
|
1688 |
+
Q10513727
|
1689 |
+
Q146701
|
1690 |
+
Q10989264
|
1691 |
+
Q473194
|
1692 |
+
Q739702
|
1693 |
+
Q9612
|
1694 |
+
Q3915542
|
1695 |
+
Q185684
|
1696 |
+
Q12779002
|
1697 |
+
Q1527264
|
1698 |
+
Q41050
|
1699 |
+
Q1267889
|
1700 |
+
Q35102
|
1701 |
+
Q60168
|
1702 |
+
Q49638525
|
1703 |
+
Q254651
|
1704 |
+
Q464980
|
1705 |
+
Q11412
|
1706 |
+
Q75
|
1707 |
+
Q181036
|
1708 |
+
Q137823
|
1709 |
+
Q3332814
|
1710 |
+
Q102231
|
1711 |
+
Q11812678
|
1712 |
+
Q41803
|
1713 |
+
Q10273457
|
1714 |
+
Q468756
|
1715 |
+
Q10494269
|
1716 |
+
Q2048319
|
1717 |
+
Q899192
|
1718 |
+
Q272870
|
1719 |
+
Q15645384
|
1720 |
+
Q16963
|
1721 |
+
Q12136
|
1722 |
+
Q1406
|
1723 |
+
Q144
|
1724 |
+
Q775343
|
1725 |
+
Q420
|
1726 |
+
Q110714168
|
1727 |
+
Q79030284
|
1728 |
+
Q37260
|
1729 |
+
Q188628
|
1730 |
+
Q132
|
1731 |
+
Q28451497
|
1732 |
+
Q8441
|
1733 |
+
Q28922
|
1734 |
+
Q3102631
|
1735 |
+
Q106980799
|
1736 |
+
Q352842
|
1737 |
+
Q3711329
|
1738 |
+
Q8142
|
1739 |
+
Q356031
|
1740 |
+
Q23392
|
1741 |
+
Q23229
|
1742 |
+
Q1800324
|
1743 |
+
Q1360926
|
1744 |
+
Q861951
|
1745 |
+
Q1884224
|
1746 |
+
Q1860
|
1747 |
+
Q30612297
|
1748 |
+
Q7001368
|
1749 |
+
Q3130
|
1750 |
+
Q1566584
|
1751 |
+
Q2920921
|
1752 |
+
Q96633923
|
1753 |
+
Q202875
|
1754 |
+
Q1904
|
1755 |
+
Q63485459
|
1756 |
+
Q15751090
|
1757 |
+
Q897
|
1758 |
+
Q1103
|
1759 |
+
Q484083
|
1760 |
+
Q11106
|
1761 |
+
Q211382
|
1762 |
+
Q1377840
|
1763 |
+
Q45761
|
1764 |
+
Q875937
|
1765 |
+
Q313
|
1766 |
+
Q275038
|
1767 |
+
Q318028
|
1768 |
+
Q1329012
|
1769 |
+
Q165
|
1770 |
+
Q219469
|
1771 |
+
Q195
|
1772 |
+
Q22471755
|
1773 |
+
Q12503
|
1774 |
+
Q49845
|
1775 |
+
Q233894
|
1776 |
+
Q875696
|
1777 |
+
Q1499786
|
1778 |
+
Q1165721
|
1779 |
+
Q27198272
|
1780 |
+
Q7075
|
1781 |
+
Q3980888
|
1782 |
+
Q659
|
1783 |
+
Q989963
|
1784 |
+
Q432449
|
1785 |
+
Q207645
|
1786 |
+
Q184194
|
1787 |
+
Q193788
|
1788 |
+
Q23442
|
1789 |
+
Q162455
|
1790 |
+
Q503
|
1791 |
+
Q47528
|
1792 |
+
Q11404
|
1793 |
+
Q1456832
|
1794 |
+
Q12772819
|
1795 |
+
Q20888800
|
1796 |
+
Q4970
|
1797 |
+
Q134768
|
1798 |
+
Q1498
|
1799 |
+
Q162247
|
1800 |
+
Q41354
|
1801 |
+
Q1030213
|
1802 |
+
Q4026292
|
1803 |
+
Q7169333
|
1804 |
+
Q1391831
|
1805 |
+
Q22698
|
1806 |
+
Q43
|
1807 |
+
Q121176
|
1808 |
+
Q170079
|
1809 |
+
Q842346
|
1810 |
+
Q3545708
|
1811 |
+
Q327055
|
1812 |
+
Q47817360
|
1813 |
+
Q9135
|
1814 |
+
Q35661296
|
1815 |
+
Q1072166
|
1816 |
+
Q457931
|
1817 |
+
Q1305415
|
1818 |
+
Q215302
|
1819 |
+
Q23397
|
1820 |
+
Q270952
|
1821 |
+
Q187456
|
1822 |
+
Q110583109
|
1823 |
+
Q193934
|
1824 |
+
Q4689421
|
1825 |
+
Q5477756
|
1826 |
+
Q36133
|
1827 |
+
Q276258
|
1828 |
+
Q855220
|
1829 |
+
Q544
|
1830 |
+
Q8201
|
1831 |
+
Q4344358
|
1832 |
+
Q223393
|
1833 |
+
Q1430731
|
1834 |
+
Q127980
|
1835 |
+
Q483247
|
1836 |
+
Q219160
|
1837 |
+
Q107724490
|
1838 |
+
Q8054
|
1839 |
+
Q2092297
|
1840 |
+
Q28865
|
1841 |
+
Q209542
|
1842 |
+
Q17107707
|
1843 |
+
Q318
|
1844 |
+
Q3966720
|
1845 |
+
Q7565
|
1846 |
+
Q43365
|
1847 |
+
Q134566
|
1848 |
+
Q6881511
|
1849 |
+
Q949930
|
1850 |
+
Q11391
|
1851 |
+
Q768575
|
1852 |
+
Q27910497
|
1853 |
+
Q659600
|
1854 |
+
Q862867
|
1855 |
+
Q23835475
|
1856 |
+
Q26376690
|
1857 |
+
Q13539073
|
1858 |
+
Q106080
|
1859 |
+
Q2325497
|
1860 |
+
Q366134
|
1861 |
+
Q6685124
|
1862 |
+
Q11822
|
1863 |
+
Q106767198
|
1864 |
+
Q163759
|
1865 |
+
Q42501
|
1866 |
+
Q57495609
|
1867 |
+
Q79478214
|
1868 |
+
Q2923673
|
1869 |
+
Q815758
|
1870 |
+
Q211503
|
1871 |
+
Q3918
|
1872 |
+
Q112123596
|
1873 |
+
Q747713
|
1874 |
+
Q23413
|
1875 |
+
Q40231
|
1876 |
+
Q29572836
|
1877 |
+
Q29558624
|
1878 |
+
Q1324197
|
1879 |
+
Q19829510
|
1880 |
+
Q832237
|
1881 |
+
Q14083
|
1882 |
+
Q5419647
|
1883 |
+
Q178026
|
1884 |
+
Q4698686
|
1885 |
+
Q150425
|
1886 |
+
Q832451
|
1887 |
+
Q5043
|
1888 |
+
Q190578
|
1889 |
+
Q816345
|
1890 |
+
Q37287750
|
1891 |
+
Q98929991
|
1892 |
+
Q943
|
1893 |
+
Q192199
|
1894 |
+
Q107998880
|
1895 |
+
Q657221
|
1896 |
+
Q1175042
|
1897 |
+
Q5113
|
1898 |
+
Q31805992
|
1899 |
+
Q844482
|
1900 |
+
Q271960
|
1901 |
+
Q2908608
|
1902 |
+
Q2472587
|
1903 |
+
Q1758905
|
1904 |
+
Q178748
|
1905 |
+
Q1139344
|
1906 |
+
Q16751793
|
1907 |
+
Q142269
|
1908 |
+
Q133772
|
1909 |
+
Q367293
|
1910 |
+
Q107412
|
1911 |
+
Q378681
|
1912 |
+
Q184395
|
1913 |
+
Q1758354
|
1914 |
+
Q718
|
1915 |
+
Q190429
|
1916 |
+
Q12859788
|
1917 |
+
Q11436
|
1918 |
+
Q2809148
|
1919 |
+
Q12705
|
1920 |
+
Q15174
|
1921 |
+
Q42998
|
1922 |
+
Q845329
|
1923 |
+
Q13276
|
1924 |
+
Q2735883
|
1925 |
+
Q1036729
|
1926 |
+
Q699612
|
1927 |
+
Q11982
|
1928 |
+
Q12861
|
1929 |
+
Q1141116
|
1930 |
+
Q53865454
|
1931 |
+
Q14748
|
1932 |
+
Q66571843
|
1933 |
+
Q194425
|
1934 |
+
Q65386997
|
1935 |
+
Q48422
|
1936 |
+
Q110551902
|
1937 |
+
Q281928
|
1938 |
+
Q12501
|
1939 |
+
Q17205
|
1940 |
+
Q59668787
|
1941 |
+
Q19862215
|
1942 |
+
Q10971235
|
1943 |
+
Q1549506
|
1944 |
+
Q27540169
|
1945 |
+
Q798505
|
1946 |
+
Q1097498
|
1947 |
+
Q622821
|
1948 |
+
Q703534
|
1949 |
+
Q105985
|
1950 |
+
Q182925
|
1951 |
+
Q1292038
|
1952 |
+
Q1153773
|
1953 |
+
Q60142
|
1954 |
+
Q1643184
|
1955 |
+
Q315
|
1956 |
+
Q183
|
1957 |
+
Q207174
|
1958 |
+
Q1266946
|
1959 |
+
Q7220961
|
1960 |
+
Q104763414
|
1961 |
+
Q7632586
|
1962 |
+
Q5604190
|
1963 |
+
Q37456277
|
1964 |
+
Q60300628
|
1965 |
+
Q11417
|
1966 |
+
Q3543591
|
1967 |
+
Q193472
|
1968 |
+
Q7605452
|
1969 |
+
Q28755323
|
1970 |
+
Q2637814
|
1971 |
+
Q483242
|
1972 |
+
Q37754875
|
1973 |
+
Q640500
|
1974 |
+
Q5516863
|
1975 |
+
Q19861552
|
1976 |
+
Q124072
|
1977 |
+
Q515
|
1978 |
+
Q97849650
|
1979 |
+
Q4167836
|
1980 |
+
Q212758
|
1981 |
+
Q43483
|
1982 |
+
Q27650233
|
1983 |
+
Q37726
|
1984 |
+
Q830
|
1985 |
+
Q713200
|
1986 |
+
Q194428
|
1987 |
+
Q11421
|
1988 |
+
Q1368665
|
1989 |
+
Q204077
|
1990 |
+
Q178651
|
1991 |
+
Q111653583
|
1992 |
+
Q1
|
1993 |
+
Q5881191
|
1994 |
+
Q6081679
|
1995 |
+
Q11472
|
1996 |
+
Q177378
|
1997 |
+
Q190672
|
1998 |
+
Q131514
|
1999 |
+
Q14536140
|
2000 |
+
Q285726
|
2001 |
+
Q113558
|
2002 |
+
Q1900326
|
2003 |
+
Q2957747
|
2004 |
+
Q11060274
|
2005 |
+
Q6499736
|
2006 |
+
Q41534
|
2007 |
+
Q2144962
|
2008 |
+
Q15175
|
2009 |
+
Q169251
|
2010 |
+
Q46944820
|
2011 |
+
Q471898
|
2012 |
+
Q56429795
|
2013 |
+
Q2138622
|
2014 |
+
Q287
|
2015 |
+
Q2998430
|
2016 |
+
Q362872
|
2017 |
+
Q16666
|
2018 |
+
Q80079
|
2019 |
+
Q174165
|
2020 |
+
Q127418
|
2021 |
+
Q69946132
|
2022 |
+
Q24489
|
2023 |
+
Q557945
|
2024 |
+
Q169470
|
2025 |
+
Q890886
|
2026 |
+
Q161179
|
2027 |
+
Q36465
|
2028 |
+
Q413
|
2029 |
+
Q2987425
|
2030 |
+
Q6817227
|
2031 |
+
Q854429
|
2032 |
+
Q7925
|
2033 |
+
Q5320
|
2034 |
+
Q1093742
|
2035 |
+
Q7969566
|
2036 |
+
Q133105
|
2037 |
+
Q123120
|
2038 |
+
Q488934
|
2039 |
+
Q202071
|
2040 |
+
Q757554
|
2041 |
+
Q3478630
|
2042 |
+
Q37226
|
2043 |
+
Q165328
|
2044 |
+
Q3695508
|
2045 |
+
Q3105497
|
2046 |
+
Q708
|
2047 |
+
Q28575
|
2048 |
+
Q988343
|
2049 |
+
Q212238
|
2050 |
+
Q124714
|
2051 |
+
Q23445
|
2052 |
+
Q11408
|
2053 |
+
Q2594281
|
2054 |
+
Q987767
|
2055 |
+
Q309035
|
2056 |
+
Q179661
|
2057 |
+
Q3077570
|
2058 |
+
Q30093000
|
2059 |
+
Q487623
|
2060 |
+
Q7946
|
2061 |
+
Q3736439
|
2062 |
+
Q152024
|
2063 |
+
Q1865430
|
dataset/MARS/analogy_entity_to_wiki_qid.txt
ADDED
@@ -0,0 +1,2411 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
mall Q219469
|
2 |
+
internal Q66571844
|
3 |
+
disputes Q180684
|
4 |
+
seeders Q111725985
|
5 |
+
rayon Q910194
|
6 |
+
podium Q60142
|
7 |
+
fanatism Q39074527
|
8 |
+
adore Q366371
|
9 |
+
sweets Q2464807
|
10 |
+
occupied Q20723554
|
11 |
+
postcard Q192425
|
12 |
+
elephant Q7378
|
13 |
+
route Q1051976
|
14 |
+
mathematician Q170790
|
15 |
+
antiques Q472760
|
16 |
+
writ Q1001059
|
17 |
+
armchair Q11285759
|
18 |
+
tonne Q191118
|
19 |
+
shipping Q1937808
|
20 |
+
success Q7632586
|
21 |
+
energy saving Q380170
|
22 |
+
rain Q7925
|
23 |
+
plan Q1371819
|
24 |
+
negotiation Q202875
|
25 |
+
seawater Q184395
|
26 |
+
organ Q1444
|
27 |
+
ritual vessel Q17379796
|
28 |
+
cucumber Q2735883
|
29 |
+
rice paper Q1066536
|
30 |
+
buoyancy Q6497624
|
31 |
+
explore Q97849650
|
32 |
+
chinese painting Q919348
|
33 |
+
personification Q207174
|
34 |
+
christian Q18001597
|
35 |
+
zip Q204
|
36 |
+
tongue Q9614
|
37 |
+
landfill Q152810
|
38 |
+
rational Q102104911
|
39 |
+
wind Q8094
|
40 |
+
creek Q1437299
|
41 |
+
bear market Q2486664
|
42 |
+
sound waves Q3629144
|
43 |
+
telephone Q11035
|
44 |
+
cake Q13276
|
45 |
+
top Q1435365
|
46 |
+
chlorophyll Q43177
|
47 |
+
pine Q1503211
|
48 |
+
desert Q8514
|
49 |
+
woods Q4421
|
50 |
+
villain Q290691
|
51 |
+
orchestration Q3367000
|
52 |
+
pepper Q201959
|
53 |
+
building material Q206615
|
54 |
+
competent Q1780863
|
55 |
+
bedding Q1762457
|
56 |
+
dirty Q107998873
|
57 |
+
famine Q168247
|
58 |
+
lion group Q6555422
|
59 |
+
small Q24245823
|
60 |
+
burger Q6663
|
61 |
+
civil servants Q63485459
|
62 |
+
fast Q191924
|
63 |
+
sauerkraut Q154166
|
64 |
+
word Q8171
|
65 |
+
child Q7569
|
66 |
+
short Q106526
|
67 |
+
petal Q107412
|
68 |
+
defense Q1985622
|
69 |
+
hotel Q27686
|
70 |
+
table Q14748
|
71 |
+
peach Q13189
|
72 |
+
outside Q30014662
|
73 |
+
children Q21075684
|
74 |
+
community Q177634
|
75 |
+
violin Q8355
|
76 |
+
law Q7748
|
77 |
+
cinema Q11424
|
78 |
+
preamble to the constitution Q3345385
|
79 |
+
petroleum Q22656
|
80 |
+
performer Q713200
|
81 |
+
hairnet Q1566593
|
82 |
+
restaurant Q11707
|
83 |
+
nomad Q128393
|
84 |
+
spring Q124714
|
85 |
+
hatred Q160232
|
86 |
+
region Q82794
|
87 |
+
abundant Q223722
|
88 |
+
mortal Q65940913
|
89 |
+
motor train Q65375807
|
90 |
+
rational numbers Q47005650
|
91 |
+
formulate Q57650068
|
92 |
+
omelette Q20129
|
93 |
+
step Q53996838
|
94 |
+
society Q8425
|
95 |
+
conductive core Q37384866
|
96 |
+
sunny Q233894
|
97 |
+
rectangle Q209
|
98 |
+
sue Q16281769
|
99 |
+
clear Q306484
|
100 |
+
zipper Q101761
|
101 |
+
world Q16502
|
102 |
+
accident Q171558
|
103 |
+
toiletry Q3246832
|
104 |
+
food poisoning Q272002
|
105 |
+
pulp Q1470757
|
106 |
+
zoo Q43501
|
107 |
+
positive number Q3176558
|
108 |
+
cure Q1595418
|
109 |
+
logical Q364
|
110 |
+
new york city Q60
|
111 |
+
electrical appliances Q60300628
|
112 |
+
rest Q879844
|
113 |
+
news Q38926
|
114 |
+
pause Q17562059
|
115 |
+
hospitalization Q3140971
|
116 |
+
car Q929
|
117 |
+
weather Q11663
|
118 |
+
carriage Q235356
|
119 |
+
coal Q24489
|
120 |
+
cutlery Q81944
|
121 |
+
penalty Q2068602
|
122 |
+
quality control Q827792
|
123 |
+
hurdles Q80024808
|
124 |
+
preview Q1324197
|
125 |
+
integrity Q1329012
|
126 |
+
castle Q23413
|
127 |
+
museums Q207694
|
128 |
+
solar energy Q40015
|
129 |
+
comb Q23834
|
130 |
+
mom Q7560
|
131 |
+
beef Q192628
|
132 |
+
graduate student Q18245166
|
133 |
+
completion Q3685258
|
134 |
+
jaguar Q35694
|
135 |
+
hydrochloric acid Q2409
|
136 |
+
province Q34876
|
137 |
+
wedding ring Q842096
|
138 |
+
traffic Q4323994
|
139 |
+
actor Q33999
|
140 |
+
market Q37654
|
141 |
+
sedan Q190578
|
142 |
+
reward and punishment Q33943815
|
143 |
+
harvester Q4229435
|
144 |
+
tissue Q40397
|
145 |
+
young Q845069
|
146 |
+
cell Q7868
|
147 |
+
soy Q11006
|
148 |
+
mesh Q691310
|
149 |
+
faithful Q1755355
|
150 |
+
subordinate Q78070424
|
151 |
+
judges Q81240
|
152 |
+
drizzle Q211521
|
153 |
+
stanza Q1756348
|
154 |
+
antarctica Q51
|
155 |
+
press conference Q272281
|
156 |
+
rattlesnake Q10282840
|
157 |
+
dinosaur Q430
|
158 |
+
wall Q42948
|
159 |
+
west Q679
|
160 |
+
enterprise Q6881511
|
161 |
+
crane Q178692
|
162 |
+
field trip Q8013033
|
163 |
+
historical site Q27916659
|
164 |
+
bar Q187456
|
165 |
+
clean energy Q4116742
|
166 |
+
lychee Q105428070
|
167 |
+
nature Q7860
|
168 |
+
speaker Q1758037
|
169 |
+
panda Q3850736
|
170 |
+
corrosion Q137056
|
171 |
+
spaceship Q3553322
|
172 |
+
real number Q12916
|
173 |
+
desktop Q9127910
|
174 |
+
additives Q4681350
|
175 |
+
culture Q11042
|
176 |
+
programs Q85574465
|
177 |
+
package Q1995545
|
178 |
+
promotion Q574433
|
179 |
+
walk Q2236563
|
180 |
+
concept Q151885
|
181 |
+
fax Q132744
|
182 |
+
beard Q42804
|
183 |
+
keep warm Q107008077
|
184 |
+
pancake Q44541
|
185 |
+
united kingdom Q145
|
186 |
+
network Q1900326
|
187 |
+
kitchenware Q1521410
|
188 |
+
test Q27318
|
189 |
+
slow Q628674
|
190 |
+
nails Q36864
|
191 |
+
gala Q200538
|
192 |
+
harmony Q184421
|
193 |
+
graduate students Q103838588
|
194 |
+
evacuation Q606332
|
195 |
+
poultry Q178559
|
196 |
+
poems Q5185279
|
197 |
+
anaconda Q3306164
|
198 |
+
security check Q11898832
|
199 |
+
gauze Q618710
|
200 |
+
human Q5
|
201 |
+
trial Q8016240
|
202 |
+
species extinction Q123509
|
203 |
+
the earth Q2
|
204 |
+
china Q148
|
205 |
+
popcorn Q924220
|
206 |
+
time Q11471
|
207 |
+
altar Q101687
|
208 |
+
potatoes Q7235103
|
209 |
+
filename Q1144928
|
210 |
+
suzhou Q42622
|
211 |
+
peach pit Q27650233
|
212 |
+
backwardness Q2362573
|
213 |
+
rise Q1139344
|
214 |
+
blue Q1088
|
215 |
+
guilty Q705178
|
216 |
+
perch Q600262
|
217 |
+
muddy Q2581003
|
218 |
+
anti-epidemic Q102227442
|
219 |
+
statistics Q12483
|
220 |
+
nitrogen Q627
|
221 |
+
fail Q1121708
|
222 |
+
sand painting Q1439311
|
223 |
+
refrigerator Q37828
|
224 |
+
meal Q6460735
|
225 |
+
peasant Q838811
|
226 |
+
process Q10843872
|
227 |
+
fire Q3196
|
228 |
+
laptop Q3962
|
229 |
+
money Q1368
|
230 |
+
virtue Q157811
|
231 |
+
dishwasher Q186263
|
232 |
+
thundercloud Q37319371
|
233 |
+
athlete Q2066131
|
234 |
+
jeans Q83363
|
235 |
+
heating Q11880006
|
236 |
+
primate Q7380
|
237 |
+
truck Q43193
|
238 |
+
knowing Q9081
|
239 |
+
peking university Q16952
|
240 |
+
ears Q7362
|
241 |
+
scholar Q2248623
|
242 |
+
plateau Q75520
|
243 |
+
christianity Q5043
|
244 |
+
pig iron Q901785
|
245 |
+
goat Q2934
|
246 |
+
pale Q593676
|
247 |
+
scared Q44619
|
248 |
+
soybean Q61503220
|
249 |
+
envy Q188739
|
250 |
+
station Q12819564
|
251 |
+
sunglasses Q217541
|
252 |
+
staff Q6813432
|
253 |
+
wechat Q283233
|
254 |
+
permission Q7169333
|
255 |
+
aid Q23835475
|
256 |
+
soil erosion Q889503
|
257 |
+
terrified Q3984767
|
258 |
+
lobby Q31948
|
259 |
+
torso Q160695
|
260 |
+
soldier Q4991371
|
261 |
+
mediterranean sea Q986177
|
262 |
+
celebration Q3010205
|
263 |
+
silicosis Q653318
|
264 |
+
aeroplane Q197
|
265 |
+
flute Q11405
|
266 |
+
data Q42848
|
267 |
+
criminal Q2159907
|
268 |
+
rhetoric Q81009
|
269 |
+
street Q79007
|
270 |
+
boring Q3210331
|
271 |
+
rotten Q49638525
|
272 |
+
lighting Q210064
|
273 |
+
chair Q15026
|
274 |
+
sheep Q7368
|
275 |
+
building Q41176
|
276 |
+
women Q467
|
277 |
+
after sales Q4690798
|
278 |
+
guide dogs Q38782
|
279 |
+
hebei university Q835731
|
280 |
+
utensils Q110014643
|
281 |
+
hair Q28472
|
282 |
+
jiangxi Q57052
|
283 |
+
cross talk Q1943920
|
284 |
+
talent Q190139
|
285 |
+
japan Q17
|
286 |
+
literary genre Q223393
|
287 |
+
leather shoes Q71003196
|
288 |
+
cervix Q666412
|
289 |
+
tires Q169545
|
290 |
+
kitten Q147
|
291 |
+
vaccines Q134808
|
292 |
+
ask Q918257
|
293 |
+
dessert Q182940
|
294 |
+
mercury Q925
|
295 |
+
magnet Q11421
|
296 |
+
plow Q47459710
|
297 |
+
cable Q646462
|
298 |
+
atmosphere Q8104
|
299 |
+
eyes Q7364
|
300 |
+
ducks Q17319881
|
301 |
+
worship Q2514663
|
302 |
+
forensics Q495304
|
303 |
+
break up Q833566
|
304 |
+
quality Q1207505
|
305 |
+
primary school Q9842
|
306 |
+
cruise Q2063640
|
307 |
+
express Q610190
|
308 |
+
averse Q60528728
|
309 |
+
revising Q102397207
|
310 |
+
beauty Q7242
|
311 |
+
steering wheel Q679300
|
312 |
+
partner Q7140693
|
313 |
+
nursing Q121176
|
314 |
+
beautiful Q813449
|
315 |
+
landmine Q178795
|
316 |
+
suv Q192152
|
317 |
+
chapel Q108325
|
318 |
+
triceratops Q14384
|
319 |
+
posterior Q2132510
|
320 |
+
lethargic Q15729017
|
321 |
+
retreat Q1760704
|
322 |
+
sulfur dioxide Q5282
|
323 |
+
parade Q657449
|
324 |
+
lamps Q1138737
|
325 |
+
real estate Q10494269
|
326 |
+
incentive Q1414816
|
327 |
+
tribe Q227936
|
328 |
+
attorney Q40348
|
329 |
+
buying Q96652354
|
330 |
+
hebei Q21208
|
331 |
+
north Q659
|
332 |
+
chuckle Q170579
|
333 |
+
cabin Q3649129
|
334 |
+
short stories Q2357358
|
335 |
+
reverse Q1542661
|
336 |
+
gaggle Q5516863
|
337 |
+
pittsburgh Q1342
|
338 |
+
coyote Q44299
|
339 |
+
measurement Q12453
|
340 |
+
sweet cake Q31808687
|
341 |
+
mammal Q7377
|
342 |
+
qinghai lake Q201294
|
343 |
+
doorknob Q23009
|
344 |
+
sofa Q131514
|
345 |
+
mouse Q7987
|
346 |
+
velociraptor Q14403
|
347 |
+
suits Q370185
|
348 |
+
senator Q15686806
|
349 |
+
pedals Q27540169
|
350 |
+
eggs Q1760818
|
351 |
+
emergencies Q93727271
|
352 |
+
hard Q699612
|
353 |
+
club Q988108
|
354 |
+
blitzkrieg Q162247
|
355 |
+
rainstorm Q65510617
|
356 |
+
chilly Q270952
|
357 |
+
essential Q30093000
|
358 |
+
suspension Q272870
|
359 |
+
teeth Q19861552
|
360 |
+
deluge Q134052
|
361 |
+
computer room Q5157576
|
362 |
+
live Q165714
|
363 |
+
gorilla Q36611
|
364 |
+
roof Q83180
|
365 |
+
resource Q1554231
|
366 |
+
drum Q11404
|
367 |
+
chest Q366134
|
368 |
+
good wine Q112230559
|
369 |
+
harvest Q213753
|
370 |
+
big Q179157
|
371 |
+
snub Q18378865
|
372 |
+
hoe Q131154
|
373 |
+
airplane Q197
|
374 |
+
environmental protection Q832237
|
375 |
+
blender Q501862
|
376 |
+
laser Q38867
|
377 |
+
plants Q756
|
378 |
+
intellectuals Q58968
|
379 |
+
chap Q16875619
|
380 |
+
mechanics Q41217
|
381 |
+
jewelry Q161439
|
382 |
+
swallow Q1401371
|
383 |
+
bicycle Q11442
|
384 |
+
mixer Q954087
|
385 |
+
captain Q19100
|
386 |
+
payment Q1148747
|
387 |
+
doors and windows Q16835776
|
388 |
+
principal Q7245047
|
389 |
+
chinese Q7850
|
390 |
+
drugs Q8386
|
391 |
+
playing Q110458661
|
392 |
+
diabetes Q12206
|
393 |
+
veto Q65474590
|
394 |
+
equilateral triangle Q157002
|
395 |
+
flavoring Q4173974
|
396 |
+
hawk Q846664
|
397 |
+
dogs Q144
|
398 |
+
doors Q45354
|
399 |
+
natural science Q7991
|
400 |
+
parallelogram Q45867
|
401 |
+
band Q215380
|
402 |
+
comics Q1004
|
403 |
+
asia Q48
|
404 |
+
teapot Q245005
|
405 |
+
fruit wine Q633625
|
406 |
+
ballot Q905151
|
407 |
+
management Q2920921
|
408 |
+
income Q1527264
|
409 |
+
jewel Q83437
|
410 |
+
creativity Q170658
|
411 |
+
knife Q32489
|
412 |
+
upward Q4010255
|
413 |
+
fish tail Q107246611
|
414 |
+
household appliances Q212920
|
415 |
+
plot Q1758354
|
416 |
+
evaluate Q63013258
|
417 |
+
cool Q687900
|
418 |
+
after reading Q13428690
|
419 |
+
light Q9128
|
420 |
+
economic crisis Q290178
|
421 |
+
sword Q12791
|
422 |
+
laborer Q19862215
|
423 |
+
software Q7397
|
424 |
+
dead sea Q23883
|
425 |
+
performance Q35140
|
426 |
+
bag Q1323314
|
427 |
+
dynamic Q113558
|
428 |
+
flour Q36465
|
429 |
+
lexicon Q8096
|
430 |
+
wither Q2594281
|
431 |
+
headphones Q186819
|
432 |
+
raptor Q48428
|
433 |
+
ladder Q168639
|
434 |
+
denim Q652698
|
435 |
+
art Q735
|
436 |
+
architecture Q12271
|
437 |
+
immediately Q6004788
|
438 |
+
tools Q89198120
|
439 |
+
pontoon Q693340
|
440 |
+
viscera Q546191
|
441 |
+
writing Q37260
|
442 |
+
earthquake Q7944
|
443 |
+
express delivery Q57616098
|
444 |
+
calcium hydroxide Q182849
|
445 |
+
justice Q13189320
|
446 |
+
root carving Q1030213
|
447 |
+
egg Q93189
|
448 |
+
pad Q378681
|
449 |
+
interior Q2998430
|
450 |
+
perfume Q131746
|
451 |
+
bright Q221656
|
452 |
+
shijiazhuang Q58401
|
453 |
+
supervision Q1175042
|
454 |
+
hard disk Q4439
|
455 |
+
australia Q408
|
456 |
+
rare Q58157328
|
457 |
+
oil paint Q296955
|
458 |
+
newspaper Q11032
|
459 |
+
wolf Q3711329
|
460 |
+
scene Q1185607
|
461 |
+
amusing Q2916374
|
462 |
+
research and develop Q276099
|
463 |
+
dead Q48422
|
464 |
+
supplies Q47462850
|
465 |
+
nation Q6266
|
466 |
+
measure blood pressure Q95422148
|
467 |
+
scull Q18785956
|
468 |
+
thermometer Q646
|
469 |
+
siege Q188055
|
470 |
+
chain bridge Q10513727
|
471 |
+
communication Q11024
|
472 |
+
transport Q7590
|
473 |
+
students Q48282
|
474 |
+
puncture Q3396153
|
475 |
+
osaka Q35765
|
476 |
+
beer Q44
|
477 |
+
under Q15332388
|
478 |
+
lift Q194433
|
479 |
+
southwest Q2381698
|
480 |
+
pain Q81938
|
481 |
+
hire Q37540140
|
482 |
+
stapler Q489157
|
483 |
+
board Q865588
|
484 |
+
hesitating Q12348865
|
485 |
+
clothes Q11460
|
486 |
+
persistence Q368671
|
487 |
+
mooring Q587735
|
488 |
+
capital Q5119
|
489 |
+
english Q1860
|
490 |
+
calendar Q12132
|
491 |
+
skirt Q2160801
|
492 |
+
colleagues Q4227944
|
493 |
+
illegal act Q1456832
|
494 |
+
jog Q1430731
|
495 |
+
sow Q37148043
|
496 |
+
shore Q468756
|
497 |
+
diatoms Q61882239
|
498 |
+
sorrow Q2809148
|
499 |
+
peking opera Q335101
|
500 |
+
customs Q367293
|
501 |
+
personnel Q105764136
|
502 |
+
story Q831691
|
503 |
+
middle school student Q16003532
|
504 |
+
ideal Q840396
|
505 |
+
conductive Q1581308
|
506 |
+
france Q142
|
507 |
+
starting Q106476041
|
508 |
+
water bottle Q6817227
|
509 |
+
village Q532
|
510 |
+
proposition Q108163
|
511 |
+
modern Q20738981
|
512 |
+
medicine Q11190
|
513 |
+
school Q3914
|
514 |
+
heat insulation Q39456562
|
515 |
+
modeling software Q112123596
|
516 |
+
courage Q208160
|
517 |
+
familiar Q386905
|
518 |
+
dry ice Q194306
|
519 |
+
white pigeon Q2028499
|
520 |
+
police station Q861951
|
521 |
+
saltpeter Q12970360
|
522 |
+
couch Q131514
|
523 |
+
jade Q175089
|
524 |
+
apartment Q188507
|
525 |
+
filament Q2365301
|
526 |
+
popular music Q373342
|
527 |
+
polo Q134211
|
528 |
+
soda Q147538
|
529 |
+
the usa Q30
|
530 |
+
sunlight Q193788
|
531 |
+
python Q28865
|
532 |
+
fire extinguisher Q190672
|
533 |
+
proverbs Q35102
|
534 |
+
singer Q177220
|
535 |
+
fishing Q14373
|
536 |
+
antelope Q25894
|
537 |
+
ferry Q25653
|
538 |
+
dried fruit Q234901
|
539 |
+
registration Q2399307
|
540 |
+
crisps Q109121530
|
541 |
+
greening Q5604190
|
542 |
+
gym Q14092
|
543 |
+
politician Q82955
|
544 |
+
litigation Q107364261
|
545 |
+
blade Q330946
|
546 |
+
citrus Q81513
|
547 |
+
fast food restaurant Q1751429
|
548 |
+
bun Q13377687
|
549 |
+
emotions Q9415
|
550 |
+
media Q340169
|
551 |
+
like Q111653583
|
552 |
+
feathers Q81025
|
553 |
+
mobility Q96622169
|
554 |
+
opera Q1344
|
555 |
+
bowl Q153988
|
556 |
+
microphone Q46384
|
557 |
+
river Q4022
|
558 |
+
canteen Q1127296
|
559 |
+
ruler Q1097498
|
560 |
+
date pit Q91209086
|
561 |
+
first Q19269277
|
562 |
+
entrance Q1137365
|
563 |
+
production Q739302
|
564 |
+
bamboo flute Q54820129
|
565 |
+
exposure Q271960
|
566 |
+
climber Q86135347
|
567 |
+
display Q778384
|
568 |
+
fireworks Q127933
|
569 |
+
inferiority Q21171262
|
570 |
+
eliminate Q3051005
|
571 |
+
pillow Q99895
|
572 |
+
lullaby Q193605
|
573 |
+
white jade Q2221893
|
574 |
+
panic Q208450
|
575 |
+
grassland Q1006733
|
576 |
+
student union Q877998
|
577 |
+
style Q1292119
|
578 |
+
inhale Q832451
|
579 |
+
tool Q39546
|
580 |
+
pigeon Q2984138
|
581 |
+
chestnut Q1406070
|
582 |
+
bark Q184453
|
583 |
+
tactics Q207645
|
584 |
+
stewardess Q12337193
|
585 |
+
asphalt Q202251
|
586 |
+
strap Q3217573
|
587 |
+
neutron Q2348
|
588 |
+
state Q7275
|
589 |
+
zinc Q758
|
590 |
+
price increase Q7242589
|
591 |
+
orchestra Q42998
|
592 |
+
food expenditure Q39982873
|
593 |
+
logistics Q177777
|
594 |
+
material Q214609
|
595 |
+
deer Q23390
|
596 |
+
wealthy Q7978035
|
597 |
+
white cloud Q2517117
|
598 |
+
sea water Q184395
|
599 |
+
cherry Q196
|
600 |
+
orchid Q142269
|
601 |
+
pencil Q14674
|
602 |
+
cement Q45190
|
603 |
+
crave Q63677013
|
604 |
+
pants Q39908
|
605 |
+
racing horse Q53716741
|
606 |
+
seafront Q63676707
|
607 |
+
the ozone layer Q35828165
|
608 |
+
hair clip Q1566584
|
609 |
+
chaohu Q855220
|
610 |
+
member Q9200127
|
611 |
+
feed Q2095
|
612 |
+
scream Q1932016
|
613 |
+
camcorder Q335234
|
614 |
+
swarm Q1199715
|
615 |
+
over Q1210093
|
616 |
+
president Q30461
|
617 |
+
monument Q4989906
|
618 |
+
pork Q191768
|
619 |
+
chimpanzee Q4126704
|
620 |
+
palace Q16560
|
621 |
+
natural disaster Q8065
|
622 |
+
porcupine Q1223829
|
623 |
+
farmhouse Q489357
|
624 |
+
photosynthesis Q11982
|
625 |
+
banana Q503
|
626 |
+
tsunami Q8070
|
627 |
+
painting Q3305213
|
628 |
+
juicer Q12334336
|
629 |
+
bonfire Q9505308
|
630 |
+
building a house Q77073841
|
631 |
+
stationery Q875696
|
632 |
+
cocoa Q45912917
|
633 |
+
ocean Q9430
|
634 |
+
oven Q36539
|
635 |
+
soy milk Q192199
|
636 |
+
rifle Q124072
|
637 |
+
drama Q25372
|
638 |
+
soymilk Q192199
|
639 |
+
memorial Q5003624
|
640 |
+
window glass Q3561314
|
641 |
+
additive Q350176
|
642 |
+
monochrome Q11231895
|
643 |
+
folk art Q1153484
|
644 |
+
bonsai Q64365
|
645 |
+
fine Q1243001
|
646 |
+
false Q5432619
|
647 |
+
peach blossom Q640500
|
648 |
+
bedroom Q193837
|
649 |
+
guitar Q6607
|
650 |
+
learning Q133500
|
651 |
+
picture Q96093619
|
652 |
+
rodent Q10850
|
653 |
+
mistake Q3732574
|
654 |
+
advertisement Q39911916
|
655 |
+
numb Q19973
|
656 |
+
prudence Q1165788
|
657 |
+
yarn Q49007
|
658 |
+
movement Q929848
|
659 |
+
market economy Q179522
|
660 |
+
remember Q18153484
|
661 |
+
policeman Q384593
|
662 |
+
cloud Q8074
|
663 |
+
interesting Q6046225
|
664 |
+
milligram Q3241121
|
665 |
+
damp Q2565924
|
666 |
+
spout Q54803638
|
667 |
+
middle school Q149566
|
668 |
+
microwave oven Q127956
|
669 |
+
bull market Q2116228
|
670 |
+
bus Q5638
|
671 |
+
drawings Q93184
|
672 |
+
natural disasters Q99427841
|
673 |
+
place Q98929991
|
674 |
+
concert Q182832
|
675 |
+
dial Q2827871
|
676 |
+
bat Q12047696
|
677 |
+
congregation Q2135977
|
678 |
+
silver Q1090
|
679 |
+
throwing Q12898216
|
680 |
+
fridge Q37828
|
681 |
+
room Q180516
|
682 |
+
canine Q19625
|
683 |
+
afraid Q4689421
|
684 |
+
receiver Q1339255
|
685 |
+
towel Q131696
|
686 |
+
red sandalwood Q2392887
|
687 |
+
flood Q8068
|
688 |
+
precipitous Q7239486
|
689 |
+
delivery and use Q34704992
|
690 |
+
clowder Q16869114
|
691 |
+
virus Q808
|
692 |
+
hua luogeng Q590111
|
693 |
+
reed Q2734060
|
694 |
+
hyphenation Q11994045
|
695 |
+
mount tai Q216059
|
696 |
+
disaster mitigation Q5281334
|
697 |
+
ceremony Q2627975
|
698 |
+
infestation Q1292038
|
699 |
+
razor Q13422881
|
700 |
+
spacecraft Q40218
|
701 |
+
supermarket Q180846
|
702 |
+
sydney Q3130
|
703 |
+
investigation Q21004260
|
704 |
+
creative Q667982
|
705 |
+
womb Q9612
|
706 |
+
friction Q82580
|
707 |
+
weekday Q41825
|
708 |
+
gardener Q758780
|
709 |
+
senate Q2570643
|
710 |
+
sodium chloride Q2314
|
711 |
+
print Q11060274
|
712 |
+
extension Q1384981
|
713 |
+
outdated Q57495609
|
714 |
+
airflow Q4698686
|
715 |
+
oil paper Q11554381
|
716 |
+
end Q12769393
|
717 |
+
rules of conduct Q59002477
|
718 |
+
entertainment Q173799
|
719 |
+
manager Q2462658
|
720 |
+
livestock Q103459
|
721 |
+
competition Q476300
|
722 |
+
sleep Q35831
|
723 |
+
byte Q8799
|
724 |
+
confectionery Q18646422
|
725 |
+
poyang lake Q207690
|
726 |
+
venice Q641
|
727 |
+
flowing water Q355304
|
728 |
+
breakfast Q80973
|
729 |
+
cream Q13228
|
730 |
+
submit Q86642263
|
731 |
+
cola Q134041
|
732 |
+
rose Q102231
|
733 |
+
seats Q37287750
|
734 |
+
tanned Q3980888
|
735 |
+
zebra Q32789
|
736 |
+
gem Q8923
|
737 |
+
tasty Q1758905
|
738 |
+
sea Q165
|
739 |
+
window Q35473
|
740 |
+
glacier Q35666
|
741 |
+
little dog Q48816342
|
742 |
+
respond Q604748
|
743 |
+
pheasant Q214169
|
744 |
+
table lamp Q36641511
|
745 |
+
red wine Q1827
|
746 |
+
physics Q413
|
747 |
+
mathematical models Q12121859
|
748 |
+
sketch Q5078274
|
749 |
+
ugly Q4080955
|
750 |
+
on Q1904
|
751 |
+
scarce Q7430330
|
752 |
+
river water Q30092769
|
753 |
+
drying Q278061
|
754 |
+
summer Q1313
|
755 |
+
song Q7366
|
756 |
+
person Q215627
|
757 |
+
pin Q838312
|
758 |
+
ahead Q17428119
|
759 |
+
field Q188869
|
760 |
+
thread Q1391831
|
761 |
+
corn Q154558
|
762 |
+
church Q16970
|
763 |
+
noisy Q11235817
|
764 |
+
fe2o3 Q3067815
|
765 |
+
alive Q332798
|
766 |
+
stagflation Q185245
|
767 |
+
grapes Q10978
|
768 |
+
enzyme Q8047
|
769 |
+
closure Q5135520
|
770 |
+
flower Q506
|
771 |
+
rice Q5090
|
772 |
+
netizen Q167382
|
773 |
+
aware Q55691459
|
774 |
+
species Q7432
|
775 |
+
cation Q326277
|
776 |
+
vinyl fiber Q11903389
|
777 |
+
fish Q152
|
778 |
+
three gorges Q12514
|
779 |
+
weapon Q728
|
780 |
+
admiration Q2824657
|
781 |
+
commodity Q317088
|
782 |
+
bridge Q12280
|
783 |
+
arbor Q23457088
|
784 |
+
steamship Q12859788
|
785 |
+
biogas Q171076
|
786 |
+
coast Q93352
|
787 |
+
reward Q66688988
|
788 |
+
invest Q6060613
|
789 |
+
nourishing Q50386808
|
790 |
+
bucket Q47107
|
791 |
+
rural areas Q175185
|
792 |
+
tree Q10884
|
793 |
+
container Q987767
|
794 |
+
lotus Q16528
|
795 |
+
ship Q11446
|
796 |
+
pie Q13360264
|
797 |
+
comparison Q1720648
|
798 |
+
carving Q18448934
|
799 |
+
convenient Q36247
|
800 |
+
rural area Q175185
|
801 |
+
furious Q27198272
|
802 |
+
repair Q2144962
|
803 |
+
sky Q527
|
804 |
+
raid Q476807
|
805 |
+
lily Q40458125
|
806 |
+
antler Q29838581
|
807 |
+
struggle Q14536140
|
808 |
+
conch Q62792
|
809 |
+
trigger Q336751
|
810 |
+
carbon dioxide Q1997
|
811 |
+
fiction Q8253
|
812 |
+
activated carbon Q190878
|
813 |
+
cushion Q10971235
|
814 |
+
weight Q25288
|
815 |
+
minor Q170079
|
816 |
+
nutrition Q2138622
|
817 |
+
selected poems Q77002510
|
818 |
+
pottery Q11642
|
819 |
+
water Q283
|
820 |
+
music notation Q233861
|
821 |
+
temperature Q11466
|
822 |
+
season Q24384
|
823 |
+
words Q1321370
|
824 |
+
lawn Q207766
|
825 |
+
rebar Q150425
|
826 |
+
radar Q47528
|
827 |
+
ditch Q2048319
|
828 |
+
piano piece Q1746015
|
829 |
+
alphabet Q9779
|
830 |
+
pesticides Q131656
|
831 |
+
shirt Q76768
|
832 |
+
service Q7406919
|
833 |
+
couple Q219160
|
834 |
+
peel Q171187
|
835 |
+
marketplace Q330284
|
836 |
+
laugh Q170579
|
837 |
+
flat Q7001368
|
838 |
+
awful Q3325266
|
839 |
+
cotton thread Q64634437
|
840 |
+
lion king Q106980799
|
841 |
+
post Q49845
|
842 |
+
organization Q43229
|
843 |
+
honey Q10987
|
844 |
+
delicate Q11196749
|
845 |
+
purple light Q2118942
|
846 |
+
necklace Q189299
|
847 |
+
infectious diseases Q788926
|
848 |
+
sneakers Q1929383
|
849 |
+
book Q571
|
850 |
+
musical note Q55400101
|
851 |
+
paws Q3050175
|
852 |
+
swimming Q31920
|
853 |
+
duck Q3736439
|
854 |
+
smelting Q2748405
|
855 |
+
hungry Q3535686
|
856 |
+
yuan dynasty Q7313
|
857 |
+
coffee Q8486
|
858 |
+
parts Q45085932
|
859 |
+
falcon Q202071
|
860 |
+
joystick Q178805
|
861 |
+
harbour Q283202
|
862 |
+
the constitution Q779
|
863 |
+
train Q870
|
864 |
+
transplanting Q356031
|
865 |
+
pearl river delta Q1144286
|
866 |
+
cocktail Q134768
|
867 |
+
construction Q385378
|
868 |
+
saltwater lake Q21955018
|
869 |
+
silver carp Q76115
|
870 |
+
hardness Q3236003
|
871 |
+
downslope Q110628325
|
872 |
+
madam Q2011889
|
873 |
+
nucleus Q40260
|
874 |
+
crime Q83267
|
875 |
+
wire Q551997
|
876 |
+
in Q668
|
877 |
+
landslides Q15751090
|
878 |
+
electric lamp Q107197071
|
879 |
+
exciting Q5324675
|
880 |
+
health care Q31207
|
881 |
+
owl Q8021345
|
882 |
+
stone Q22731
|
883 |
+
social sciences Q34749
|
884 |
+
seasoning Q773108
|
885 |
+
lubricant Q323840
|
886 |
+
acid rain Q40178
|
887 |
+
ecstatic Q920312
|
888 |
+
turkey Q43
|
889 |
+
united states Q30
|
890 |
+
deodorant Q309035
|
891 |
+
life Q3
|
892 |
+
broad beans Q110014844
|
893 |
+
feeling Q205555
|
894 |
+
participation Q1773152
|
895 |
+
rock sugar Q849816
|
896 |
+
pollution Q58734
|
897 |
+
high speed rail Q211382
|
898 |
+
loose Q488934
|
899 |
+
metal Q11426
|
900 |
+
distance Q126017
|
901 |
+
hongze lake Q1154914
|
902 |
+
pill Q1097859
|
903 |
+
speeding Q17598913
|
904 |
+
shell Q318028
|
905 |
+
gown Q1036729
|
906 |
+
bead Q1053956
|
907 |
+
life science Q420
|
908 |
+
city Q515
|
909 |
+
father Q7565
|
910 |
+
milk Q8495
|
911 |
+
cheap Q5088855
|
912 |
+
baffled Q18250984
|
913 |
+
black box Q29256
|
914 |
+
film Q11424
|
915 |
+
intellectual property Q131257
|
916 |
+
hailstorm Q61071643
|
917 |
+
taking medicine Q42764222
|
918 |
+
oil field Q211748
|
919 |
+
rockery Q1141231
|
920 |
+
garden Q1107656
|
921 |
+
antenna Q204664
|
922 |
+
last Q30013662
|
923 |
+
treat Q1127306
|
924 |
+
bricks Q37537637
|
925 |
+
rock Q8063
|
926 |
+
cabbage Q14328596
|
927 |
+
heat Q44432
|
928 |
+
copper Q753
|
929 |
+
doll Q168658
|
930 |
+
cellulose Q80294
|
931 |
+
finalization Q17089828
|
932 |
+
sink Q140565
|
933 |
+
jiangsu Q16963
|
934 |
+
fallacy Q186150
|
935 |
+
admonition Q4683829
|
936 |
+
check in Q1068755
|
937 |
+
malt Q152024
|
938 |
+
liberal arts Q13539073
|
939 |
+
natural gas Q40858
|
940 |
+
cobra Q2303322
|
941 |
+
fitness Q331710
|
942 |
+
internet addiction Q831735
|
943 |
+
loss Q20888800
|
944 |
+
makeup Q107196431
|
945 |
+
dock Q124282
|
946 |
+
publishing Q3972943
|
947 |
+
greens Q20134
|
948 |
+
shoes Q22676
|
949 |
+
vulture Q123120
|
950 |
+
beads Q27964852
|
951 |
+
team Q327245
|
952 |
+
camping Q455550
|
953 |
+
solid Q11438
|
954 |
+
summary Q776754
|
955 |
+
wings Q622988
|
956 |
+
eggshell Q2731253
|
957 |
+
head Q23640
|
958 |
+
polymer Q81163
|
959 |
+
cool down Q30612297
|
960 |
+
gaseous Q11432
|
961 |
+
coke Q192795
|
962 |
+
food crop Q31839438
|
963 |
+
casualty Q1056901
|
964 |
+
court Q41487
|
965 |
+
beach Q40080
|
966 |
+
crops Q235352
|
967 |
+
ore Q102798
|
968 |
+
clock Q376
|
969 |
+
cup Q81727
|
970 |
+
page Q1069725
|
971 |
+
stock market Q475000
|
972 |
+
viper Q192056
|
973 |
+
base station Q1379116
|
974 |
+
pollutants Q19829510
|
975 |
+
tank Q12876
|
976 |
+
laboratory Q483242
|
977 |
+
drug Q8386
|
978 |
+
electricity generation Q383973
|
979 |
+
sickness Q12136
|
980 |
+
toothbrush Q134205
|
981 |
+
stegosaurus Q14388
|
982 |
+
jump Q1151752
|
983 |
+
orangutan Q41050
|
984 |
+
hangzhou Q4970
|
985 |
+
uniform Q7434
|
986 |
+
crowd Q13430821
|
987 |
+
consolation Q1990010
|
988 |
+
ascend Q5926364
|
989 |
+
emissions Q10711575
|
990 |
+
forest Q4421
|
991 |
+
tripod Q683906
|
992 |
+
fries Q152088
|
993 |
+
bit Q8805
|
994 |
+
canada Q16
|
995 |
+
air Q7391292
|
996 |
+
sincere Q3372957
|
997 |
+
hour Q25235
|
998 |
+
carrots Q5046723
|
999 |
+
income distribution Q3915542
|
1000 |
+
object Q488383
|
1001 |
+
blood Q7873
|
1002 |
+
detoxification Q1090423
|
1003 |
+
increment Q54453625
|
1004 |
+
inside Q109810863
|
1005 |
+
blossoms Q2047589
|
1006 |
+
indulge Q28452346
|
1007 |
+
scholars Q2248623
|
1008 |
+
battery Q240313
|
1009 |
+
guest room Q111122056
|
1010 |
+
bath Q22889
|
1011 |
+
cotton Q11457
|
1012 |
+
design Q82604
|
1013 |
+
ability Q109581753
|
1014 |
+
stroke Q12202
|
1015 |
+
harmful Q84426668
|
1016 |
+
record Q1241356
|
1017 |
+
clever Q362872
|
1018 |
+
mobile Q784445
|
1019 |
+
silicone Q146439
|
1020 |
+
siberian tiger Q69581
|
1021 |
+
ethics Q9465
|
1022 |
+
chassis Q1068107
|
1023 |
+
tuberculosis Q12204
|
1024 |
+
box Q188075
|
1025 |
+
odd Q215302
|
1026 |
+
isosceles triangle Q875937
|
1027 |
+
tub Q38942
|
1028 |
+
juror Q16102026
|
1029 |
+
phytoplankton Q184755
|
1030 |
+
call for help Q48631343
|
1031 |
+
toy Q11422
|
1032 |
+
magnetic field Q11408
|
1033 |
+
bookshelf Q107326062
|
1034 |
+
thermos Q23664
|
1035 |
+
typewriter Q46335
|
1036 |
+
vitamins Q34956
|
1037 |
+
drink Q40050
|
1038 |
+
happiness Q8
|
1039 |
+
diseases Q12136
|
1040 |
+
scarcity Q815758
|
1041 |
+
patient Q181600
|
1042 |
+
banyan tree Q465570
|
1043 |
+
toronto Q172
|
1044 |
+
listener Q7747542
|
1045 |
+
great wall Q1117001
|
1046 |
+
lotion Q1871151
|
1047 |
+
clockwork Q1400734
|
1048 |
+
believe Q815612
|
1049 |
+
poorly Q6084258
|
1050 |
+
anhui Q40956
|
1051 |
+
coral skeleton Q81171102
|
1052 |
+
university Q3918
|
1053 |
+
go home Q5574826
|
1054 |
+
warship Q3114762
|
1055 |
+
boat Q35872
|
1056 |
+
mountain stream Q2570370
|
1057 |
+
internet search Q59639813
|
1058 |
+
waiting Q16944487
|
1059 |
+
hollywood Q34006
|
1060 |
+
bee Q7391
|
1061 |
+
title page Q1339862
|
1062 |
+
send Q118093
|
1063 |
+
berlin Q64
|
1064 |
+
warriors Q739702
|
1065 |
+
burning Q911076
|
1066 |
+
astronaut Q11631
|
1067 |
+
dog Q144
|
1068 |
+
pig Q787
|
1069 |
+
injection Q245359
|
1070 |
+
sharp Q2542618
|
1071 |
+
fighter plane Q127771
|
1072 |
+
allosaurus Q14400
|
1073 |
+
stock Q1196314
|
1074 |
+
music Q638
|
1075 |
+
aircraft carrier Q17205
|
1076 |
+
animal Q729
|
1077 |
+
rice porridge Q35661296
|
1078 |
+
water purifier Q43339363
|
1079 |
+
cultural relics Q15814324
|
1080 |
+
oil Q42962
|
1081 |
+
venus Q313
|
1082 |
+
stapling Q112805200
|
1083 |
+
plastic film mulch Q37739088
|
1084 |
+
bathroom Q190771
|
1085 |
+
innovating Q107519268
|
1086 |
+
social contact Q28755323
|
1087 |
+
pack Q1758639
|
1088 |
+
portion Q2105114
|
1089 |
+
great white shark Q129026
|
1090 |
+
watercolor Q50030
|
1091 |
+
steel Q11427
|
1092 |
+
jury Q837675
|
1093 |
+
miss manners Q6303561
|
1094 |
+
college Q189004
|
1095 |
+
mascara Q324120
|
1096 |
+
natural phenomenon Q1322005
|
1097 |
+
unhappy Q20706561
|
1098 |
+
lock Q105731
|
1099 |
+
stadium Q483110
|
1100 |
+
chef Q3499072
|
1101 |
+
legal punishment Q104778027
|
1102 |
+
spouse Q1196129
|
1103 |
+
run Q1360926
|
1104 |
+
army Q37726
|
1105 |
+
illumination Q6000365
|
1106 |
+
conclusion Q20665666
|
1107 |
+
millilitre Q2332346
|
1108 |
+
amusement park Q194195
|
1109 |
+
aloe vera Q80079
|
1110 |
+
rust Q184197
|
1111 |
+
factory Q83405
|
1112 |
+
computer desk Q363931
|
1113 |
+
exchange Q179076
|
1114 |
+
normal Q273176
|
1115 |
+
subsequently Q69693864
|
1116 |
+
home Q7743
|
1117 |
+
turtleneck Q1544262
|
1118 |
+
electrical appliance Q2425052
|
1119 |
+
component Q1310239
|
1120 |
+
palm Q2001588
|
1121 |
+
hunan Q45761
|
1122 |
+
vase Q191851
|
1123 |
+
ring Q46847
|
1124 |
+
crust Q4232578
|
1125 |
+
barracks Q131263
|
1126 |
+
toward Q7829561
|
1127 |
+
war Q198
|
1128 |
+
horn Q163759
|
1129 |
+
space station Q25956
|
1130 |
+
drop Q185789
|
1131 |
+
shrub Q42295
|
1132 |
+
flagship store Q1426795
|
1133 |
+
cold Q270952
|
1134 |
+
snake Q2102
|
1135 |
+
megabit Q3332814
|
1136 |
+
shovel Q7220961
|
1137 |
+
windows Q1406
|
1138 |
+
slaying Q844482
|
1139 |
+
guangdong Q15175
|
1140 |
+
dyes Q37456277
|
1141 |
+
advise Q290716
|
1142 |
+
pouch Q949930
|
1143 |
+
software development Q638608
|
1144 |
+
clothing Q11460
|
1145 |
+
phs Q339353
|
1146 |
+
tax Q8161
|
1147 |
+
flag Q14660
|
1148 |
+
development Q7562091
|
1149 |
+
fight Q650711
|
1150 |
+
purified water Q59349761
|
1151 |
+
happy Q8
|
1152 |
+
early warning Q27813916
|
1153 |
+
clean Q107998880
|
1154 |
+
employee Q703534
|
1155 |
+
nap Q5242962
|
1156 |
+
torrential rain Q2238184
|
1157 |
+
riverway Q2155636
|
1158 |
+
feline Q64374257
|
1159 |
+
cooking Q38695
|
1160 |
+
driving Q999646
|
1161 |
+
methane Q37129
|
1162 |
+
friend Q17297777
|
1163 |
+
movie Q11424
|
1164 |
+
classical music Q9730
|
1165 |
+
fox Q8331
|
1166 |
+
india Q668
|
1167 |
+
tears Q76469
|
1168 |
+
whiskers Q913572
|
1169 |
+
jealous Q42859626
|
1170 |
+
hive Q104882831
|
1171 |
+
ginseng Q20817212
|
1172 |
+
social Q345367
|
1173 |
+
store Q1800324
|
1174 |
+
drenched Q28451497
|
1175 |
+
mountain peak Q207326
|
1176 |
+
square Q174782
|
1177 |
+
monopoly Q43637
|
1178 |
+
pincushion Q1083709
|
1179 |
+
spare tire Q2074836
|
1180 |
+
pride Q3071551
|
1181 |
+
badminton Q7291
|
1182 |
+
paper Q11472
|
1183 |
+
well Q43483
|
1184 |
+
infrastructure Q121359
|
1185 |
+
cd Q974
|
1186 |
+
grapefruit Q21552830
|
1187 |
+
construction industry Q13405640
|
1188 |
+
lushan Q622616
|
1189 |
+
phone Q202064
|
1190 |
+
wardrobe Q106106
|
1191 |
+
non-ferrous metals Q96326026
|
1192 |
+
sign Q3695082
|
1193 |
+
decoration Q11796413
|
1194 |
+
paperback Q193934
|
1195 |
+
rabbit Q9394
|
1196 |
+
character Q3241972
|
1197 |
+
pamper Q492768
|
1198 |
+
black Q23445
|
1199 |
+
boots Q190868
|
1200 |
+
tv series Q5398426
|
1201 |
+
static Q1940914
|
1202 |
+
pistol Q1907525
|
1203 |
+
snow Q7561
|
1204 |
+
fan Q193432
|
1205 |
+
traditional chinese medicine Q200253
|
1206 |
+
airport Q1248784
|
1207 |
+
tidy Q27898977
|
1208 |
+
idea Q131841
|
1209 |
+
desk Q1064858
|
1210 |
+
hydrogen chloride Q211086
|
1211 |
+
the universe Q1
|
1212 |
+
melting Q106080
|
1213 |
+
tropical Q20755687
|
1214 |
+
tight Q1937716
|
1215 |
+
off Q21818619
|
1216 |
+
temperament Q80157
|
1217 |
+
litre Q11582
|
1218 |
+
fruit Q3314483
|
1219 |
+
weight loss Q718113
|
1220 |
+
crossing the line Q3489000
|
1221 |
+
harvesting Q213753
|
1222 |
+
smuggling Q184840
|
1223 |
+
pub Q212198
|
1224 |
+
choir Q131186
|
1225 |
+
kid Q7569
|
1226 |
+
constellation Q8928
|
1227 |
+
regulatory Q70330436
|
1228 |
+
rear-end collision Q375102
|
1229 |
+
exhale Q2215554
|
1230 |
+
exterior Q1385033
|
1231 |
+
recruit Q1141116
|
1232 |
+
grass Q643352
|
1233 |
+
trademark Q167270
|
1234 |
+
exhausted Q15729017
|
1235 |
+
diamond drill Q100293148
|
1236 |
+
textbook Q83790
|
1237 |
+
milk powder Q496696
|
1238 |
+
sad Q281928
|
1239 |
+
battlefield Q4895508
|
1240 |
+
lights Q9128
|
1241 |
+
glasses Q27334842
|
1242 |
+
ink Q127418
|
1243 |
+
outsiders Q1055332
|
1244 |
+
dislike Q111653591
|
1245 |
+
return Q65088609
|
1246 |
+
recovery Q38127868
|
1247 |
+
mine disaster Q1550225
|
1248 |
+
climb Q1499786
|
1249 |
+
lady Q467
|
1250 |
+
cooked Q104439289
|
1251 |
+
rare metals Q15760439
|
1252 |
+
previously Q79030196
|
1253 |
+
safe Q471898
|
1254 |
+
housekeeping Q708514
|
1255 |
+
books Q571
|
1256 |
+
storage Q9158768
|
1257 |
+
same Q27135598
|
1258 |
+
brewing Q869095
|
1259 |
+
identical Q842346
|
1260 |
+
infection Q166231
|
1261 |
+
full moon Q104641
|
1262 |
+
hinge Q244330
|
1263 |
+
submerge Q29558624
|
1264 |
+
cat Q4167836
|
1265 |
+
flourishing Q5462027
|
1266 |
+
true Q16751793
|
1267 |
+
goals Q4503831
|
1268 |
+
elk Q61480
|
1269 |
+
concrete Q22657
|
1270 |
+
tiger Q19939
|
1271 |
+
private enterprise Q110583109
|
1272 |
+
cent Q58093
|
1273 |
+
vixen Q1865430
|
1274 |
+
soon Q3543591
|
1275 |
+
the great wall Q12501
|
1276 |
+
monorail Q187934
|
1277 |
+
cultivation Q488798
|
1278 |
+
sandwich Q28803
|
1279 |
+
modern art Q38166
|
1280 |
+
iris Q178748
|
1281 |
+
the uk Q145
|
1282 |
+
conception Q37754875
|
1283 |
+
delisting Q73545549
|
1284 |
+
oxygen atoms Q38674435
|
1285 |
+
speakers Q79935565
|
1286 |
+
bracelet Q201664
|
1287 |
+
shanghai Q8686
|
1288 |
+
carry Q432449
|
1289 |
+
truth Q7949
|
1290 |
+
troupe Q37555509
|
1291 |
+
weaving Q192296
|
1292 |
+
selfie Q12068677
|
1293 |
+
congestion Q102187260
|
1294 |
+
cardboard Q389782
|
1295 |
+
literary works Q16321420
|
1296 |
+
article Q191067
|
1297 |
+
white people Q235155
|
1298 |
+
games Q11410
|
1299 |
+
machine Q11019
|
1300 |
+
score Q522344
|
1301 |
+
dollar Q14083
|
1302 |
+
consulting room Q73371931
|
1303 |
+
warrior Q1250916
|
1304 |
+
gymnosperms Q59618763
|
1305 |
+
weibo Q9387
|
1306 |
+
philosophy department Q109246805
|
1307 |
+
jail Q40357
|
1308 |
+
pneumonia Q12192
|
1309 |
+
go Q11413
|
1310 |
+
murder Q132821
|
1311 |
+
hamburger Q51974
|
1312 |
+
holster Q1475429
|
1313 |
+
dinner Q657221
|
1314 |
+
grade Q18185
|
1315 |
+
confucius Q4604
|
1316 |
+
medical equipment Q6657015
|
1317 |
+
new Q33979
|
1318 |
+
sweet and sour Q104383007
|
1319 |
+
fall Q11620540
|
1320 |
+
r&d Q276099
|
1321 |
+
biscuits Q19801756
|
1322 |
+
wooden table Q64572893
|
1323 |
+
full Q178026
|
1324 |
+
slippery road Q2718084
|
1325 |
+
pointer Q118155
|
1326 |
+
lenses Q60415975
|
1327 |
+
mountains Q8502
|
1328 |
+
walnut Q208021
|
1329 |
+
calculate Q622821
|
1330 |
+
cattle and sheep Q23929134
|
1331 |
+
currency Q8142
|
1332 |
+
researcher Q1650915
|
1333 |
+
gothic architecture Q176483
|
1334 |
+
journal Q49850
|
1335 |
+
incompetent Q62562253
|
1336 |
+
organism Q7239
|
1337 |
+
player Q4197743
|
1338 |
+
product Q2424752
|
1339 |
+
ant Q781
|
1340 |
+
body shape Q25212061
|
1341 |
+
tedious Q22471755
|
1342 |
+
hefei Q185684
|
1343 |
+
treatment Q179661
|
1344 |
+
sowing Q777671
|
1345 |
+
wrong Q29485
|
1346 |
+
soap Q34396
|
1347 |
+
core Q23595
|
1348 |
+
cattle Q830
|
1349 |
+
mrs. Q313549
|
1350 |
+
attractions Q18237485
|
1351 |
+
dishonesty Q5282225
|
1352 |
+
monitor Q137823
|
1353 |
+
show Q15116915
|
1354 |
+
division Q169534
|
1355 |
+
lamb Q4575936
|
1356 |
+
land Q11081619
|
1357 |
+
vote Q42904171
|
1358 |
+
leopard Q34706
|
1359 |
+
arrest Q1403016
|
1360 |
+
tile Q468402
|
1361 |
+
compressor Q178898
|
1362 |
+
autumn harvest Q41775274
|
1363 |
+
bad Q44142
|
1364 |
+
piano Q5994
|
1365 |
+
cockroach Q18123008
|
1366 |
+
bamboo Q27891820
|
1367 |
+
carbon Q623
|
1368 |
+
want Q26256512
|
1369 |
+
grain Q2995529
|
1370 |
+
speed bumps Q112881805
|
1371 |
+
salad Q9266
|
1372 |
+
droplets Q97502608
|
1373 |
+
huangshan Q180470
|
1374 |
+
compiling Q12769326
|
1375 |
+
utensil Q1357761
|
1376 |
+
security guard Q856887
|
1377 |
+
cleaning Q17200001
|
1378 |
+
firewood Q35808
|
1379 |
+
satellite Q1297322
|
1380 |
+
stitch Q602854
|
1381 |
+
fishery Q180538
|
1382 |
+
engine Q44167
|
1383 |
+
negligence Q160070
|
1384 |
+
pony Q188828
|
1385 |
+
flight Q206021
|
1386 |
+
hyperbole Q181036
|
1387 |
+
poem Q5185279
|
1388 |
+
font Q4868296
|
1389 |
+
commercial vehicle Q580939
|
1390 |
+
nail clippers Q270380
|
1391 |
+
line Q37105
|
1392 |
+
output Q1150771
|
1393 |
+
tambourine Q193666
|
1394 |
+
auctioneer Q2743689
|
1395 |
+
guangming daily Q3102631
|
1396 |
+
haze Q643546
|
1397 |
+
spice Q42527
|
1398 |
+
root Q111029
|
1399 |
+
mass Q11423
|
1400 |
+
agriculture Q11451
|
1401 |
+
canvas Q4259259
|
1402 |
+
sonata Q131269
|
1403 |
+
running Q105674
|
1404 |
+
mosquito Q7367
|
1405 |
+
large Q10989264
|
1406 |
+
prime minister Q14212
|
1407 |
+
able Q16157710
|
1408 |
+
minerals Q7946
|
1409 |
+
scales Q134566
|
1410 |
+
expensive Q46944820
|
1411 |
+
bloom Q2987425
|
1412 |
+
dad Q7565
|
1413 |
+
quail Q6072584
|
1414 |
+
fuel Q42501
|
1415 |
+
athletics Q542
|
1416 |
+
musician Q639669
|
1417 |
+
abnormal Q4668171
|
1418 |
+
commemoration day Q21190816
|
1419 |
+
strings Q709099
|
1420 |
+
behind Q16938807
|
1421 |
+
pane Q2416562
|
1422 |
+
police Q35535
|
1423 |
+
scoundrel Q1305415
|
1424 |
+
limousine Q188475
|
1425 |
+
mediterranean Q4918
|
1426 |
+
transparent Q487623
|
1427 |
+
sorghum Q105549747
|
1428 |
+
parishioner Q55876931
|
1429 |
+
load Q913999
|
1430 |
+
lazy Q573952
|
1431 |
+
snack Q749316
|
1432 |
+
brick Q40089
|
1433 |
+
cookware Q1521410
|
1434 |
+
disney Q7414
|
1435 |
+
navigator Q254651
|
1436 |
+
hate Q160232
|
1437 |
+
beaver Q47542
|
1438 |
+
mend Q18035603
|
1439 |
+
gourd Q7370671
|
1440 |
+
dive Q3389076
|
1441 |
+
relief Q245117
|
1442 |
+
program Q170584
|
1443 |
+
welding Q131172
|
1444 |
+
pear blossom Q106767198
|
1445 |
+
dameisha Q25101745
|
1446 |
+
bacon Q11106
|
1447 |
+
lion Q140
|
1448 |
+
metabolism Q1057
|
1449 |
+
leaf Q33971
|
1450 |
+
nutrient Q181394
|
1451 |
+
birds Q5113
|
1452 |
+
indolent Q18573407
|
1453 |
+
collar Q497903
|
1454 |
+
tides Q1779406
|
1455 |
+
away Q55604566
|
1456 |
+
reasonable Q845329
|
1457 |
+
apple Q89
|
1458 |
+
strength Q605035
|
1459 |
+
places of interest Q3469818
|
1460 |
+
downhill Q319899
|
1461 |
+
star Q523
|
1462 |
+
paper cut Q1630633
|
1463 |
+
distant Q126017
|
1464 |
+
curtains Q899625
|
1465 |
+
application Q166142
|
1466 |
+
hand Q33767
|
1467 |
+
silicon Q670
|
1468 |
+
bamboo slips Q107489970
|
1469 |
+
bangalore Q1355
|
1470 |
+
promotions Q24024808
|
1471 |
+
tragic Q39073224
|
1472 |
+
introvert Q106765930
|
1473 |
+
hearing Q160289
|
1474 |
+
waning moon Q34604447
|
1475 |
+
yogurt Q13317
|
1476 |
+
effort Q170584
|
1477 |
+
environment Q2249676
|
1478 |
+
steamer Q178193
|
1479 |
+
granulated sugar Q4409456
|
1480 |
+
plate Q57216
|
1481 |
+
anterior Q1867507
|
1482 |
+
wheat Q15645384
|
1483 |
+
automobile Q1420
|
1484 |
+
greenhouse Q165044
|
1485 |
+
lodge Q108840195
|
1486 |
+
air conditioner Q1265533
|
1487 |
+
student Q48282
|
1488 |
+
eas Q1318054
|
1489 |
+
tree roots Q4233325
|
1490 |
+
wok Q208364
|
1491 |
+
discrimination Q169207
|
1492 |
+
religion Q9174
|
1493 |
+
water heater Q16630809
|
1494 |
+
rich Q106804044
|
1495 |
+
text message Q13159882
|
1496 |
+
donjon Q91165
|
1497 |
+
daisy Q26158
|
1498 |
+
nuclear test Q210112
|
1499 |
+
drug driving Q104763414
|
1500 |
+
album Q482994
|
1501 |
+
organized Q110916833
|
1502 |
+
fungus Q764
|
1503 |
+
calf Q2935
|
1504 |
+
raw Q18754
|
1505 |
+
back Q133279
|
1506 |
+
consulting Q63769412
|
1507 |
+
delicious Q329192
|
1508 |
+
administration Q5283295
|
1509 |
+
watch Q178794
|
1510 |
+
spontaneous combustion Q369012
|
1511 |
+
los angeles Q65
|
1512 |
+
deforestation Q169940
|
1513 |
+
color Q1075
|
1514 |
+
martial arts Q11417
|
1515 |
+
tyrannosaurus Q14332
|
1516 |
+
spinach Q36814998
|
1517 |
+
intranet Q483426
|
1518 |
+
january Q108
|
1519 |
+
mountain Q8502
|
1520 |
+
extravert Q9257166
|
1521 |
+
nuclear energy Q12739
|
1522 |
+
spray Q1424833
|
1523 |
+
boarding Q887540
|
1524 |
+
teaching Q352842
|
1525 |
+
humanities Q80083
|
1526 |
+
golden monkey Q775343
|
1527 |
+
radiation Q18335
|
1528 |
+
paddy Q15838080
|
1529 |
+
tea leaf Q484083
|
1530 |
+
bow Q46311
|
1531 |
+
starving Q27499098
|
1532 |
+
knowledge Q9081
|
1533 |
+
usa Q30
|
1534 |
+
compute Q622821
|
1535 |
+
chemistry Q2329
|
1536 |
+
frightened Q79322171
|
1537 |
+
water pollution Q183129
|
1538 |
+
stove Q203789
|
1539 |
+
protestantism Q23540
|
1540 |
+
teacher Q37226
|
1541 |
+
bench scale Q26377667
|
1542 |
+
eagle Q2092297
|
1543 |
+
sales management Q5657855
|
1544 |
+
e-commerce Q484847
|
1545 |
+
humans Q5
|
1546 |
+
landscape Q107425
|
1547 |
+
habit Q1299714
|
1548 |
+
doctor Q96633923
|
1549 |
+
tall Q1770
|
1550 |
+
before Q79030196
|
1551 |
+
nuclear submarine Q757554
|
1552 |
+
wine Q282
|
1553 |
+
female doctor Q110228881
|
1554 |
+
implement Q39546
|
1555 |
+
gini coefficient Q162455
|
1556 |
+
chicken Q780
|
1557 |
+
iron ore Q191552
|
1558 |
+
gunpowder Q12861
|
1559 |
+
historical fiction Q1196408
|
1560 |
+
rebuttal Q1410600
|
1561 |
+
monday Q105
|
1562 |
+
subsidies Q17054224
|
1563 |
+
doze Q37019865
|
1564 |
+
protein Q8054
|
1565 |
+
pipa Q6685124
|
1566 |
+
furniture Q14745
|
1567 |
+
pence Q234129
|
1568 |
+
kilogram Q11570
|
1569 |
+
vapor Q255722
|
1570 |
+
irritate Q6073879
|
1571 |
+
chess Q718
|
1572 |
+
reading Q199657
|
1573 |
+
bovid Q25497
|
1574 |
+
artwork Q838948
|
1575 |
+
leather bag Q1107811
|
1576 |
+
emphasis Q920915
|
1577 |
+
london Q84
|
1578 |
+
shilling Q213142
|
1579 |
+
homogeneous Q110081157
|
1580 |
+
merchants Q6818448
|
1581 |
+
holidays Q107383247
|
1582 |
+
watermelon Q38645
|
1583 |
+
insurance Q43183
|
1584 |
+
physicist Q169470
|
1585 |
+
lime water Q78948116
|
1586 |
+
plant Q756
|
1587 |
+
colorless Q1396399
|
1588 |
+
bike Q11442
|
1589 |
+
nanjing Q16666
|
1590 |
+
bleach Q11587
|
1591 |
+
loyalty Q1132131
|
1592 |
+
ankle Q168002
|
1593 |
+
immortal Q208417
|
1594 |
+
aim Q4503831
|
1595 |
+
benefit Q101097118
|
1596 |
+
seagull Q2699803
|
1597 |
+
flask Q95685937
|
1598 |
+
branch Q2923673
|
1599 |
+
preservatives Q56429795
|
1600 |
+
jam Q1269
|
1601 |
+
shoot Q220869
|
1602 |
+
soy sauce Q229385
|
1603 |
+
skipping rope Q244158
|
1604 |
+
alcohol Q47146337
|
1605 |
+
choker Q1424519
|
1606 |
+
camera Q15328
|
1607 |
+
man Q8441
|
1608 |
+
physical changes Q112902505
|
1609 |
+
sheet music Q187947
|
1610 |
+
vocabulary Q6499736
|
1611 |
+
sequoia Q1975652
|
1612 |
+
yellow Q943
|
1613 |
+
sparrow Q28922
|
1614 |
+
visible light Q76299
|
1615 |
+
carp Q2751223
|
1616 |
+
outward Q62128996
|
1617 |
+
powerful Q20735603
|
1618 |
+
civil law Q222249
|
1619 |
+
water plants Q103312200
|
1620 |
+
oxides Q50690
|
1621 |
+
thesis Q1266946
|
1622 |
+
silent Q103827699
|
1623 |
+
notes Q89200784
|
1624 |
+
western europe Q27496
|
1625 |
+
switch Q5320
|
1626 |
+
trousers Q39908
|
1627 |
+
shingles Q182155
|
1628 |
+
receive Q76664785
|
1629 |
+
fluorescent lamp Q182925
|
1630 |
+
opposed Q1498298
|
1631 |
+
inertia Q122508
|
1632 |
+
upslope Q17107707
|
1633 |
+
vinegar Q41354
|
1634 |
+
galaxy Q318
|
1635 |
+
jar Q1207302
|
1636 |
+
exhibition Q464980
|
1637 |
+
stingy Q7617440
|
1638 |
+
out Q1153773
|
1639 |
+
submarine Q2811
|
1640 |
+
worker Q327055
|
1641 |
+
ideation Q17039022
|
1642 |
+
dry Q1470363
|
1643 |
+
network card Q165233
|
1644 |
+
insincere Q112112091
|
1645 |
+
innovation Q174165
|
1646 |
+
produce Q1913301
|
1647 |
+
editing Q194105
|
1648 |
+
muffler Q1165721
|
1649 |
+
sane Q7157308
|
1650 |
+
hospital Q16917
|
1651 |
+
renewable energy Q12705
|
1652 |
+
anti-scratch Q16829014
|
1653 |
+
fluidity Q3074482
|
1654 |
+
point Q44946
|
1655 |
+
land sea Q64141914
|
1656 |
+
processor Q1466064
|
1657 |
+
selling Q3380760
|
1658 |
+
flock Q120997
|
1659 |
+
shanxi Q46913
|
1660 |
+
magnolia Q157017
|
1661 |
+
chemist Q593644
|
1662 |
+
platypus Q15343
|
1663 |
+
litter Q476850
|
1664 |
+
cash Q693464
|
1665 |
+
southeast Q6452640
|
1666 |
+
device Q3966
|
1667 |
+
formulation Q3077570
|
1668 |
+
pot Q2845
|
1669 |
+
breakthrough Q2920535
|
1670 |
+
exit Q854429
|
1671 |
+
down Q15332388
|
1672 |
+
sun Q132
|
1673 |
+
gourmet Q22261015
|
1674 |
+
soil Q36133
|
1675 |
+
cell phone Q17517
|
1676 |
+
gas Q11432
|
1677 |
+
steamed bread Q7605452
|
1678 |
+
sales Q194189
|
1679 |
+
microcomputer Q32738
|
1680 |
+
unorganized Q2141879
|
1681 |
+
beverage Q40050
|
1682 |
+
fish head Q5454629
|
1683 |
+
buttons Q1573122
|
1684 |
+
woody plants Q111694088
|
1685 |
+
gear Q143828
|
1686 |
+
button Q160464
|
1687 |
+
vertebrate Q110551902
|
1688 |
+
external Q66571843
|
1689 |
+
net Q986291
|
1690 |
+
cry Q152247
|
1691 |
+
housing Q1247867
|
1692 |
+
front Q899192
|
1693 |
+
flowers Q506
|
1694 |
+
mirror Q146701
|
1695 |
+
blossom Q2047589
|
1696 |
+
immediacy Q2811064
|
1697 |
+
erhu Q726306
|
1698 |
+
wristband Q1549506
|
1699 |
+
finance Q43015
|
1700 |
+
fans Q193432
|
1701 |
+
diary Q185598
|
1702 |
+
casting the net Q60346683
|
1703 |
+
seafood Q192935
|
1704 |
+
crazy Q505619
|
1705 |
+
mobile phone Q17517
|
1706 |
+
rake Q200822
|
1707 |
+
calcium deficiency Q44705078
|
1708 |
+
chinchilla Q1073656
|
1709 |
+
favor Q1263003
|
1710 |
+
curing Q1503716
|
1711 |
+
weighing Q12779002
|
1712 |
+
exam Q107383235
|
1713 |
+
reduced production Q37211094
|
1714 |
+
fingers Q2364697
|
1715 |
+
classroom Q621114
|
1716 |
+
compass Q103896
|
1717 |
+
bomber Q170877
|
1718 |
+
property Q937228
|
1719 |
+
brooch Q499916
|
1720 |
+
necessary Q2301186
|
1721 |
+
sugar Q11002
|
1722 |
+
pavilion Q276173
|
1723 |
+
failure Q1121708
|
1724 |
+
election Q40231
|
1725 |
+
unable Q21655367
|
1726 |
+
ultrasound Q162564
|
1727 |
+
valley Q39816
|
1728 |
+
computer Q68
|
1729 |
+
cow Q11748378
|
1730 |
+
skateboard Q15783
|
1731 |
+
lost Q23567
|
1732 |
+
ice Q23392
|
1733 |
+
rubber Q18113858
|
1734 |
+
symbols Q80071
|
1735 |
+
keyboard Q1921606
|
1736 |
+
vibration Q3695508
|
1737 |
+
clay Q42302
|
1738 |
+
lad Q3010
|
1739 |
+
review Q265158
|
1740 |
+
academia Q1211427
|
1741 |
+
silver dollar Q1186710
|
1742 |
+
decrement Q47496130
|
1743 |
+
inbound Q74424273
|
1744 |
+
difficult Q66741662
|
1745 |
+
superstition Q133182
|
1746 |
+
einstein Q937
|
1747 |
+
high speed railway Q858485
|
1748 |
+
kite Q42861
|
1749 |
+
catalyst Q12385831
|
1750 |
+
above Q15332375
|
1751 |
+
buffalo Q40435
|
1752 |
+
bulb Q188748
|
1753 |
+
sweater Q232191
|
1754 |
+
iron Q677
|
1755 |
+
waterway Q1267889
|
1756 |
+
investment Q4290
|
1757 |
+
simple Q508291
|
1758 |
+
generous Q3100542
|
1759 |
+
blood vessel Q988343
|
1760 |
+
radish Q33669098
|
1761 |
+
descend Q15805316
|
1762 |
+
paper-cut Q1630633
|
1763 |
+
wool Q42329
|
1764 |
+
action Q4026292
|
1765 |
+
commander Q6620231
|
1766 |
+
unwilling Q20737431
|
1767 |
+
leg Q133105
|
1768 |
+
manner Q367293
|
1769 |
+
porcelain Q130693
|
1770 |
+
gloves Q169031
|
1771 |
+
after Q79030284
|
1772 |
+
goose Q16529344
|
1773 |
+
library Q7075
|
1774 |
+
gold Q897
|
1775 |
+
intelligent Q2615500
|
1776 |
+
corruption Q366
|
1777 |
+
jewellery Q161439
|
1778 |
+
jacket Q849964
|
1779 |
+
festival Q132241
|
1780 |
+
chinese characters Q8201
|
1781 |
+
private hospital Q4284971
|
1782 |
+
phenomenon Q483247
|
1783 |
+
altitude Q190200
|
1784 |
+
orthography Q43091
|
1785 |
+
condiment Q2596997
|
1786 |
+
black tea Q203415
|
1787 |
+
tail Q60960
|
1788 |
+
cheongsam Q836934
|
1789 |
+
bouquet Q1187930
|
1790 |
+
tired Q15729017
|
1791 |
+
jackal Q125525
|
1792 |
+
mammals Q7377
|
1793 |
+
butterfly Q11946202
|
1794 |
+
iodine Q1103
|
1795 |
+
bread Q7802
|
1796 |
+
drilling Q890886
|
1797 |
+
seaport Q15310171
|
1798 |
+
osteoporosis Q165328
|
1799 |
+
fishing boat Q106619054
|
1800 |
+
frankness Q19357492
|
1801 |
+
beetle Q22671
|
1802 |
+
toaster Q14890
|
1803 |
+
civil servant Q212238
|
1804 |
+
taste buds Q862867
|
1805 |
+
dress Q200539
|
1806 |
+
receipt Q330190
|
1807 |
+
text Q234460
|
1808 |
+
theft Q2727213
|
1809 |
+
balance Q1365641
|
1810 |
+
epidemic Q44512
|
1811 |
+
bidding Q2142250
|
1812 |
+
cars Q182153
|
1813 |
+
wing chun Q217127
|
1814 |
+
instrument Q109564569
|
1815 |
+
sadness Q169251
|
1816 |
+
childhood Q276258
|
1817 |
+
analog Q50824047
|
1818 |
+
radio Q872
|
1819 |
+
battle Q178561
|
1820 |
+
miscalculation Q21096985
|
1821 |
+
wheel Q446
|
1822 |
+
calligraphy Q12681
|
1823 |
+
county Q28575
|
1824 |
+
heroin Q60168
|
1825 |
+
orchard Q236371
|
1826 |
+
white fungus Q7994710
|
1827 |
+
mother Q7560
|
1828 |
+
wig Q105507
|
1829 |
+
steel industry Q3406654
|
1830 |
+
fragility Q2645227
|
1831 |
+
paragraph Q194431
|
1832 |
+
tv Q672
|
1833 |
+
sidewalk Q177749
|
1834 |
+
college student Q315247
|
1835 |
+
silica Q15724995
|
1836 |
+
plane Q17285
|
1837 |
+
scissors Q40847
|
1838 |
+
month Q5151
|
1839 |
+
seedling Q1385709
|
1840 |
+
narrow Q18162636
|
1841 |
+
tv station Q1616075
|
1842 |
+
tai chi Q167987
|
1843 |
+
bottle Q80228
|
1844 |
+
audience Q211198
|
1845 |
+
colouring Q2022532
|
1846 |
+
letter Q133492
|
1847 |
+
ingenious Q16254265
|
1848 |
+
acrobat Q11957145
|
1849 |
+
chen jingrun Q715284
|
1850 |
+
beehive Q165107
|
1851 |
+
education Q8434
|
1852 |
+
combustion Q133235
|
1853 |
+
woodcarving Q337907
|
1854 |
+
configuration Q1866689
|
1855 |
+
secretary Q80687
|
1856 |
+
hourglass Q179904
|
1857 |
+
day Q573
|
1858 |
+
citizen Q1020994
|
1859 |
+
technology Q11016
|
1860 |
+
storytelling Q989963
|
1861 |
+
drunk driving Q250062
|
1862 |
+
victory Q50000
|
1863 |
+
pine tree Q59668787
|
1864 |
+
lens Q768575
|
1865 |
+
jinwen Q45530615
|
1866 |
+
extinction Q123509
|
1867 |
+
forget Q1377840
|
1868 |
+
entrepreneur Q131524
|
1869 |
+
aircraft Q11436
|
1870 |
+
bucks Q23229
|
1871 |
+
beijing Q956
|
1872 |
+
trees Q10884
|
1873 |
+
herd Q209542
|
1874 |
+
broker Q160117
|
1875 |
+
night sky Q1153471
|
1876 |
+
milk tea Q1884224
|
1877 |
+
gap Q16887036
|
1878 |
+
item Q11723795
|
1879 |
+
order Q36602
|
1880 |
+
flowers and trees Q1458430
|
1881 |
+
dollars Q4917
|
1882 |
+
industrial property Q2750057
|
1883 |
+
sniffles Q7547763
|
1884 |
+
serpent Q742168
|
1885 |
+
liver Q9368
|
1886 |
+
social science Q34749
|
1887 |
+
disinfect Q19758137
|
1888 |
+
shenzhen Q15174
|
1889 |
+
lead Q708
|
1890 |
+
gigabit Q3105497
|
1891 |
+
ox Q473194
|
1892 |
+
cowpen Q5179793
|
1893 |
+
fabric Q457931
|
1894 |
+
drought Q43059
|
1895 |
+
lemon Q1093742
|
1896 |
+
power Q25107
|
1897 |
+
baby Q998
|
1898 |
+
activity Q1914636
|
1899 |
+
decisive Q18245643
|
1900 |
+
lampshade Q947686
|
1901 |
+
horde Q915366
|
1902 |
+
commercial Q2986261
|
1903 |
+
candy Q185583
|
1904 |
+
confiscation Q275038
|
1905 |
+
string Q184754
|
1906 |
+
read Q16881915
|
1907 |
+
card Q42965339
|
1908 |
+
pool Q11020
|
1909 |
+
ornamental trees Q51377271
|
1910 |
+
operating system Q9135
|
1911 |
+
judge Q16533
|
1912 |
+
wet Q843589
|
1913 |
+
elevator Q132911
|
1914 |
+
class Q37517
|
1915 |
+
volcanic eruption Q7692360
|
1916 |
+
prison Q40357
|
1917 |
+
energy Q11379
|
1918 |
+
auto Q1420
|
1919 |
+
umbrella Q41607
|
1920 |
+
kitchen Q43164
|
1921 |
+
flesh Q13119823
|
1922 |
+
uphill Q111084907
|
1923 |
+
fujian Q41705
|
1924 |
+
science fiction Q24925
|
1925 |
+
exercise Q29051769
|
1926 |
+
fowl Q853058
|
1927 |
+
integer Q12503
|
1928 |
+
geometry Q8087
|
1929 |
+
oil lamp Q821952
|
1930 |
+
optical fiber Q162
|
1931 |
+
broiler Q326301
|
1932 |
+
sweet peach Q20011064
|
1933 |
+
atom Q9121
|
1934 |
+
emerge Q1050405
|
1935 |
+
photo Q125191
|
1936 |
+
proceed Q107724490
|
1937 |
+
afflicted Q16960397
|
1938 |
+
giggle Q170579
|
1939 |
+
capsules Q112597033
|
1940 |
+
comma Q161736
|
1941 |
+
starch Q41534
|
1942 |
+
drawing on Q20490867
|
1943 |
+
tape measure Q214649
|
1944 |
+
door Q36794
|
1945 |
+
velvet antler Q4344358
|
1946 |
+
poplar Q30456678
|
1947 |
+
input Q1125955
|
1948 |
+
loom Q173056
|
1949 |
+
farmer Q131512
|
1950 |
+
drinks Q40050
|
1951 |
+
foraging Q2916569
|
1952 |
+
reporter Q42909
|
1953 |
+
wipers Q1889932
|
1954 |
+
language Q315
|
1955 |
+
works Q24897655
|
1956 |
+
lace Q231250
|
1957 |
+
host Q221673
|
1958 |
+
road Q34442
|
1959 |
+
control Q29017603
|
1960 |
+
shrubbery Q7504315
|
1961 |
+
hunger Q165947
|
1962 |
+
personality Q641118
|
1963 |
+
quyi Q7273050
|
1964 |
+
stage Q194428
|
1965 |
+
reference Q121769
|
1966 |
+
russia Q159
|
1967 |
+
bookmarks Q112578360
|
1968 |
+
fever Q38933
|
1969 |
+
arranged Q4795846
|
1970 |
+
space Q380933
|
1971 |
+
empty Q67932942
|
1972 |
+
adjust Q317158
|
1973 |
+
script Q33260112
|
1974 |
+
forward Q280658
|
1975 |
+
circuit Q718570
|
1976 |
+
anger Q79871
|
1977 |
+
xiaogang village Q97027313
|
1978 |
+
practice Q334600
|
1979 |
+
tasteless Q30100868
|
1980 |
+
aluminum Q663
|
1981 |
+
confused Q557945
|
1982 |
+
risk Q104493
|
1983 |
+
taciturn Q305418
|
1984 |
+
thinker Q24885626
|
1985 |
+
woman Q467
|
1986 |
+
hybrid cat Q111733338
|
1987 |
+
science Q336
|
1988 |
+
red Q3142
|
1989 |
+
food Q2095
|
1990 |
+
vague Q37241976
|
1991 |
+
catch Q2941721
|
1992 |
+
plastic Q11474
|
1993 |
+
plum Q12372598
|
1994 |
+
huawei Q160120
|
1995 |
+
market behavior Q51036317
|
1996 |
+
securities Q1416279
|
1997 |
+
sour Q1928899
|
1998 |
+
sleeve Q256458
|
1999 |
+
office Q182060
|
2000 |
+
drummer Q386854
|
2001 |
+
fatty meat Q107262066
|
2002 |
+
tabletop Q48885552
|
2003 |
+
sociology Q21201
|
2004 |
+
roll film Q1599148
|
2005 |
+
peanut Q37383
|
2006 |
+
traffic police Q16874635
|
2007 |
+
lumpy Q9005258
|
2008 |
+
warm spring Q7969566
|
2009 |
+
wonderland Q3402263
|
2010 |
+
teacup Q81707
|
2011 |
+
port Q44782
|
2012 |
+
idioms Q34770
|
2013 |
+
detective comics Q1799866
|
2014 |
+
pursue Q11639276
|
2015 |
+
shopping mall Q31374404
|
2016 |
+
yangtze river Q5413
|
2017 |
+
hairpin Q1566584
|
2018 |
+
argumentation Q15766977
|
2019 |
+
combat Q650711
|
2020 |
+
stability Q2325497
|
2021 |
+
warming Q4311765
|
2022 |
+
act Q421744
|
2023 |
+
roses Q11822
|
2024 |
+
letters Q1277575
|
2025 |
+
strong Q991202
|
2026 |
+
climate change Q125928
|
2027 |
+
timpani Q189737
|
2028 |
+
illness Q814207
|
2029 |
+
sleeves Q79478214
|
2030 |
+
discovery Q12772819
|
2031 |
+
energetic Q3545708
|
2032 |
+
anchor Q168432
|
2033 |
+
officer Q61022630
|
2034 |
+
noise Q179448
|
2035 |
+
mount huang Q106865609
|
2036 |
+
questionnaire Q747810
|
2037 |
+
excited Q5419647
|
2038 |
+
college students Q23915873
|
2039 |
+
flowing Q355304
|
2040 |
+
apply Q4781618
|
2041 |
+
angry Q37097368
|
2042 |
+
official Q599151
|
2043 |
+
trace elements Q11781028
|
2044 |
+
brightness Q221656
|
2045 |
+
icicle Q496380
|
2046 |
+
human body Q23852
|
2047 |
+
bronze Q34095
|
2048 |
+
lotus pond Q698996
|
2049 |
+
hieroglyphic Q193762
|
2050 |
+
mining Q44497
|
2051 |
+
screen Q79137673
|
2052 |
+
hydrogen Q556
|
2053 |
+
spoon Q81895
|
2054 |
+
art dealer Q173950
|
2055 |
+
training Q918385
|
2056 |
+
illegal sales Q50622697
|
2057 |
+
close Q12731
|
2058 |
+
computer hardware Q3966
|
2059 |
+
sports Q349
|
2060 |
+
incorrect Q29485
|
2061 |
+
loyal Q1569314
|
2062 |
+
launch Q659600
|
2063 |
+
park Q22698
|
2064 |
+
caries Q133772
|
2065 |
+
medications Q3304003
|
2066 |
+
taizhou Q57931
|
2067 |
+
croissant Q207832
|
2068 |
+
gravity Q11412
|
2069 |
+
illuminated Q740910
|
2070 |
+
desk lamp Q3216816
|
2071 |
+
brain Q1073
|
2072 |
+
railroad Q22667
|
2073 |
+
earth Q2
|
2074 |
+
tire Q169545
|
2075 |
+
wood Q287
|
2076 |
+
decrease Q5249659
|
2077 |
+
mountain range Q46831
|
2078 |
+
legal act Q1864008
|
2079 |
+
chocolate Q195
|
2080 |
+
poverty alleviation Q1824165
|
2081 |
+
bud Q189838
|
2082 |
+
reaction Q343546
|
2083 |
+
ukulele Q61285
|
2084 |
+
leaves Q1807128
|
2085 |
+
pen Q165447
|
2086 |
+
dismiss Q17052147
|
2087 |
+
pigment Q161179
|
2088 |
+
heavy industry Q622662
|
2089 |
+
lamp Q1138737
|
2090 |
+
island Q23442
|
2091 |
+
horse Q726
|
2092 |
+
tea Q6097
|
2093 |
+
mil Q184194
|
2094 |
+
list Q12139612
|
2095 |
+
enrage Q18031357
|
2096 |
+
calcium supplementation Q65386997
|
2097 |
+
harbor Q283202
|
2098 |
+
dawn Q11326182
|
2099 |
+
seat Q2207370
|
2100 |
+
long Q10786776
|
2101 |
+
chronic diseases Q15816392
|
2102 |
+
antipathy Q581459
|
2103 |
+
cao cao Q204077
|
2104 |
+
electron Q2225
|
2105 |
+
parcel Q13107365
|
2106 |
+
uk Q145
|
2107 |
+
villa Q3950
|
2108 |
+
misjudgment Q47817360
|
2109 |
+
torment Q2290980
|
2110 |
+
divan Q2354542
|
2111 |
+
bottom Q11812678
|
2112 |
+
pestis Q60300035
|
2113 |
+
planning Q309100
|
2114 |
+
industry Q8148
|
2115 |
+
warm Q13099607
|
2116 |
+
mahogany Q958012
|
2117 |
+
forage Q13377214
|
2118 |
+
tofu Q177378
|
2119 |
+
protestant Q110714168
|
2120 |
+
watering Q11453
|
2121 |
+
supervising Q28007056
|
2122 |
+
travel Q61509
|
2123 |
+
puppy Q39266
|
2124 |
+
sunscreen Q827658
|
2125 |
+
new moon Q108566
|
2126 |
+
printing Q11034
|
2127 |
+
love Q316
|
2128 |
+
country Q6256
|
2129 |
+
infant Q998
|
2130 |
+
internet Q75
|
2131 |
+
germany Q183
|
2132 |
+
dolphin Q7369
|
2133 |
+
colorful Q1368665
|
2134 |
+
sweet Q2003356
|
2135 |
+
monkey Q1367
|
2136 |
+
online games Q60315954
|
2137 |
+
clone Q3308178
|
2138 |
+
convenience Q5166129
|
2139 |
+
driving safely Q72128824
|
2140 |
+
hearing aids Q323808
|
2141 |
+
outbound Q7111875
|
2142 |
+
company Q783794
|
2143 |
+
beginning Q529711
|
2144 |
+
digestive system Q9649
|
2145 |
+
guangzhou Q16572
|
2146 |
+
policy Q1156854
|
2147 |
+
faith Q5410500
|
2148 |
+
help Q1643184
|
2149 |
+
pastry Q477248
|
2150 |
+
baiyangdian Q2665615
|
2151 |
+
interview Q178651
|
2152 |
+
emotion Q9415
|
2153 |
+
crayons Q107383376
|
2154 |
+
delivery Q2334804
|
2155 |
+
honeysuckle Q53865327
|
2156 |
+
appliance Q1183543
|
2157 |
+
syllogism Q107342
|
2158 |
+
liquid Q11435
|
2159 |
+
mood Q331769
|
2160 |
+
flash Q221836
|
2161 |
+
disagreement Q104813442
|
2162 |
+
trunk Q193472
|
2163 |
+
birch Q865564
|
2164 |
+
squirrel Q9482
|
2165 |
+
dig Q285726
|
2166 |
+
south Q667
|
2167 |
+
lake Q23397
|
2168 |
+
girl Q3031
|
2169 |
+
paris Q90
|
2170 |
+
cut Q1308978
|
2171 |
+
aluminium Q663
|
2172 |
+
hieroglyph Q193762
|
2173 |
+
steelyard Q1650330
|
2174 |
+
cloth Q5849500
|
2175 |
+
fatigue Q9690
|
2176 |
+
haiku Q37707
|
2177 |
+
legs Q133105
|
2178 |
+
kids Q646426
|
2179 |
+
staircase Q12511
|
2180 |
+
up Q1498
|
2181 |
+
rainbow Q1052
|
2182 |
+
accountability Q2798912
|
2183 |
+
printer Q6500733
|
2184 |
+
windbreaks Q51379512
|
2185 |
+
cover Q331481
|
2186 |
+
refrigeration Q747713
|
2187 |
+
fat Q127980
|
2188 |
+
office hall Q14713005
|
2189 |
+
strike Q49776
|
2190 |
+
obsolete Q107356532
|
2191 |
+
equipment Q10273457
|
2192 |
+
flame Q235544
|
2193 |
+
crutches Q95444384
|
2194 |
+
soft Q18037771
|
2195 |
+
learning to drive Q18151617
|
2196 |
+
documents Q9344
|
2197 |
+
judicial Q105985
|
2198 |
+
glaciers Q53865454
|
2199 |
+
ion Q36496
|
2200 |
+
willing Q37262525
|
2201 |
+
carbonated beverage Q13417200
|
2202 |
+
dangerous Q44104
|
2203 |
+
backward Q16938807
|
2204 |
+
thrush Q1249178
|
2205 |
+
power generation Q26376690
|
2206 |
+
anti-impact Q100159782
|
2207 |
+
part Q15989253
|
2208 |
+
inland lake Q31805992
|
2209 |
+
unfamiliar Q7884320
|
2210 |
+
animals Q729
|
2211 |
+
spring ploughing Q18890897
|
2212 |
+
crow Q43365
|
2213 |
+
giant panda Q33602
|
2214 |
+
broadcast Q109507868
|
2215 |
+
campaign Q18812548
|
2216 |
+
wheat kernel Q46988452
|
2217 |
+
sacrifice Q179723
|
2218 |
+
pet rabbit Q149017
|
2219 |
+
vacant Q56056305
|
2220 |
+
common Q1305037
|
2221 |
+
unaware Q56736680
|
2222 |
+
railway Q22667
|
2223 |
+
dry powder Q1334805
|
2224 |
+
cicada Q1947892
|
2225 |
+
cells Q7868
|
2226 |
+
listing Q798505
|
2227 |
+
penny Q234129
|
2228 |
+
unfortunate Q20077244
|
2229 |
+
socrates Q913
|
2230 |
+
crate Q605384
|
2231 |
+
big eyes Q10858674
|
2232 |
+
bloated Q29710539
|
2233 |
+
jujube Q3093648
|
2234 |
+
disease Q12136
|
2235 |
+
criminal police Q6081679
|
2236 |
+
stamen Q103129
|
2237 |
+
chloroplast Q47263
|
2238 |
+
red fuji Q3565037
|
2239 |
+
queen bee Q816345
|
2240 |
+
liquor Q56139
|
2241 |
+
auction Q177923
|
2242 |
+
clan Q211503
|
2243 |
+
bed Q42177
|
2244 |
+
notepad Q43013
|
2245 |
+
wide Q2125243
|
2246 |
+
skills Q10670181
|
2247 |
+
video game Q7889
|
2248 |
+
ships Q11446
|
2249 |
+
white Q23444
|
2250 |
+
concerned Q1324697
|
2251 |
+
drinking Q876776
|
2252 |
+
skin Q1074
|
2253 |
+
tent Q170544
|
2254 |
+
poor Q5729485
|
2255 |
+
salt Q12370
|
2256 |
+
brush Q614467
|
2257 |
+
bezoar Q851415
|
2258 |
+
employ Q1056396
|
2259 |
+
innovation development Q98089548
|
2260 |
+
knee pad Q681515
|
2261 |
+
passenger car Q753779
|
2262 |
+
parish Q102496
|
2263 |
+
solar system Q544
|
2264 |
+
history Q309
|
2265 |
+
mushrooms Q83093
|
2266 |
+
sand Q34679
|
2267 |
+
health Q12147
|
2268 |
+
analysis Q217602
|
2269 |
+
stamps Q79701
|
2270 |
+
margins Q1145724
|
2271 |
+
green Q3133
|
2272 |
+
preservation Q830393
|
2273 |
+
profit Q2112073
|
2274 |
+
leather Q286
|
2275 |
+
italy Q38
|
2276 |
+
old Q822282
|
2277 |
+
universe Q1
|
2278 |
+
tea set Q3408351
|
2279 |
+
panax notoginseng Q15551438
|
2280 |
+
good people Q46999639
|
2281 |
+
needle Q1192354
|
2282 |
+
fragrant Q5477756
|
2283 |
+
bristle Q894231
|
2284 |
+
inverse Q7017933
|
2285 |
+
anthracite Q182458
|
2286 |
+
troops Q10841757
|
2287 |
+
conductivity Q4593291
|
2288 |
+
national day Q57598
|
2289 |
+
survey method Q814232
|
2290 |
+
swimsuit Q212989
|
2291 |
+
oxygen Q629
|
2292 |
+
government Q7188
|
2293 |
+
bunk Q107196737
|
2294 |
+
recruitment Q899277
|
2295 |
+
mineral Q7946
|
2296 |
+
lunar eclipse Q44235
|
2297 |
+
security Q2526135
|
2298 |
+
rampant Q1469340
|
2299 |
+
instruments Q50817452
|
2300 |
+
german Q188
|
2301 |
+
starring Q37156731
|
2302 |
+
hunt Q36963
|
2303 |
+
bad news Q1460233
|
2304 |
+
abstract Q333291
|
2305 |
+
sensible Q3478630
|
2306 |
+
beg Q127955
|
2307 |
+
honest Q5893251
|
2308 |
+
freeze Q1105534
|
2309 |
+
electric light Q1326621
|
2310 |
+
wheat ear Q3966720
|
2311 |
+
keys Q21491451
|
2312 |
+
rhododendron Q189393
|
2313 |
+
agitated Q27067578
|
2314 |
+
band leader Q1198887
|
2315 |
+
shelf Q2637814
|
2316 |
+
tea house Q1072166
|
2317 |
+
telescope Q4213
|
2318 |
+
scheme Q1155772
|
2319 |
+
seizure Q6279182
|
2320 |
+
vegetables Q11004
|
2321 |
+
ultraviolet ray Q11391
|
2322 |
+
impatience Q16523690
|
2323 |
+
melody Q170412
|
2324 |
+
adhesive Q131790
|
2325 |
+
sphygmomanometer Q503968
|
2326 |
+
death Q4
|
2327 |
+
field army Q51977
|
2328 |
+
board of directors Q188628
|
2329 |
+
red beans Q489703
|
2330 |
+
silk Q37681
|
2331 |
+
electricity Q12725
|
2332 |
+
celery Q28298
|
2333 |
+
barrack Q131263
|
2334 |
+
radio waves Q4262
|
2335 |
+
car body Q15729598
|
2336 |
+
judgment Q3769186
|
2337 |
+
we media Q2908608
|
2338 |
+
phone line Q26359826
|
2339 |
+
poaching Q34577
|
2340 |
+
thin Q33686650
|
2341 |
+
diamond Q5283
|
2342 |
+
antlers Q834007
|
2343 |
+
peak Q207326
|
2344 |
+
sentence Q41796
|
2345 |
+
melon Q5881191
|
2346 |
+
forbidden city Q80290
|
2347 |
+
pass Q23069713
|
2348 |
+
glass Q11469
|
2349 |
+
national people's congress Q19211
|
2350 |
+
hot Q28128222
|
2351 |
+
headquarter Q7540126
|
2352 |
+
reduced yield Q40128349
|
2353 |
+
computer viruses Q47508768
|
2354 |
+
depression Q190429
|
2355 |
+
high temperature Q28128222
|
2356 |
+
backpack Q5843
|
2357 |
+
track Q160342
|
2358 |
+
gun Q110155210
|
2359 |
+
value Q194112
|
2360 |
+
turtle Q223044
|
2361 |
+
equator Q23538
|
2362 |
+
miserable Q20862847
|
2363 |
+
people Q2472587
|
2364 |
+
safe landing Q111870615
|
2365 |
+
gibbon Q185939
|
2366 |
+
hypertension Q95566669
|
2367 |
+
insect Q1390
|
2368 |
+
freighter Q2957747
|
2369 |
+
pest Q219174
|
2370 |
+
waves Q73006538
|
2371 |
+
vouchers Q59927255
|
2372 |
+
hospitalized Q69946132
|
2373 |
+
syringe Q273318
|
2374 |
+
laces Q56274905
|
2375 |
+
accent Q16001535
|
2376 |
+
tableware Q851782
|
2377 |
+
daydream Q6028924
|
2378 |
+
lines Q27910497
|
2379 |
+
transportation Q12162227
|
2380 |
+
gramm Q41803
|
2381 |
+
house Q3947
|
2382 |
+
juice Q8492
|
2383 |
+
mice Q83310
|
2384 |
+
alarm Q212758
|
2385 |
+
mamba Q194425
|
2386 |
+
stocks Q1484064
|
2387 |
+
notebook Q43013
|
2388 |
+
air pressure Q67389075
|
2389 |
+
rails Q190478
|
2390 |
+
characters Q1620031
|
2391 |
+
one day Q232161
|
2392 |
+
gasoline Q39558
|
2393 |
+
game Q11410
|
2394 |
+
biodegradation Q696715
|
2395 |
+
lollipop Q217446
|
2396 |
+
railcar Q752392
|
2397 |
+
whale Q1865281
|
2398 |
+
below Q15332388
|
2399 |
+
high mountain Q29572836
|
2400 |
+
logical fallacies Q37645474
|
2401 |
+
proofreading Q834191
|
2402 |
+
visual art Q36649
|
2403 |
+
bird Q5113
|
2404 |
+
feast Q132241
|
2405 |
+
body Q170494
|
2406 |
+
formaldehyde Q161210
|
2407 |
+
ivory Q82001
|
2408 |
+
rules Q1151067
|
2409 |
+
documentary Q4164344
|
2410 |
+
chronograph Q1088223
|
2411 |
+
moscow Q649
|
dataset/MARS/analogy_relations.txt
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
P361
|
2 |
+
A5
|
3 |
+
P828
|
4 |
+
A12
|
5 |
+
A10
|
6 |
+
A2
|
7 |
+
A7
|
8 |
+
A6
|
9 |
+
A16
|
10 |
+
P186
|
11 |
+
A0
|
12 |
+
A17
|
13 |
+
A1
|
14 |
+
A8
|
15 |
+
P31
|
16 |
+
A9
|
17 |
+
P1552
|
18 |
+
P366
|
19 |
+
A13
|
20 |
+
A3
|
21 |
+
A11
|
22 |
+
A18
|
23 |
+
P461
|
24 |
+
P1889
|
25 |
+
P276
|
26 |
+
A4
|
27 |
+
A15
|
dataset/MarKG/entity2text.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
dataset/MarKG/entity2textlong.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
dataset/MarKG/relation2text.txt
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
P276 location
|
2 |
+
P47 shares border with
|
3 |
+
P140 religion or worldview
|
4 |
+
P910 topic's main category
|
5 |
+
P279 subclass of
|
6 |
+
P101 field of work
|
7 |
+
P1889 different from
|
8 |
+
P155 follows
|
9 |
+
P1343 described by source
|
10 |
+
P31 instance of
|
11 |
+
P3095 practiced by
|
12 |
+
P2283 uses
|
13 |
+
P5008 on focus list of Wikimedia project
|
14 |
+
P2852 emergency phone number
|
15 |
+
P1056 product or material produced
|
16 |
+
P1792 category of associated people
|
17 |
+
P131 located in the administrative territorial entity
|
18 |
+
P2853 electrical plug type
|
19 |
+
P27 country of citizenship
|
20 |
+
P21 sex or gender
|
21 |
+
P2341 indigenous to
|
22 |
+
P460 said to be the same as
|
23 |
+
P366 has use
|
24 |
+
P159 headquarters location
|
25 |
+
P17 country
|
26 |
+
P1464 category for people born here
|
27 |
+
P527 has part(s)
|
28 |
+
P530 diplomatic relation
|
29 |
+
P1151 topic's main Wikimedia portal
|
30 |
+
P1433 published in
|
31 |
+
P112 founded by
|
32 |
+
P5125 Wikimedia outline
|
33 |
+
P1995 health specialty
|
34 |
+
P105 taxon rank
|
35 |
+
P30 continent
|
36 |
+
P106 occupation
|
37 |
+
P463 member of
|
38 |
+
P462 color
|
39 |
+
P495 country of origin
|
40 |
+
P136 genre
|
41 |
+
P361 part of
|
42 |
+
P282 writing system
|
43 |
+
P175 performer
|
44 |
+
P750 distributed by
|
45 |
+
P162 producer
|
46 |
+
P150 contains the administrative territorial entity
|
47 |
+
P206 located in or next to body of water
|
48 |
+
P2184 history of topic
|
49 |
+
P1552 has quality
|
50 |
+
P2079 fabrication method
|
51 |
+
P2579 studied by
|
52 |
+
P1412 languages spoken, written or signed
|
53 |
+
P1269 facet of
|
54 |
+
P364 original language of film or TV show
|
55 |
+
P1001 applies to jurisdiction
|
56 |
+
P921 main subject
|
57 |
+
P740 location of formation
|
58 |
+
P2578 studies
|
59 |
+
P306 operating system
|
60 |
+
P1435 heritage designation
|
61 |
+
P186 made from material
|
62 |
+
P6 head of government
|
63 |
+
P828 has cause
|
64 |
+
P6379 has works in the collection
|
65 |
+
P163 flag
|
66 |
+
P264 record label
|
67 |
+
P38 currency
|
68 |
+
P461 opposite of
|
69 |
+
P190 twinned administrative body
|
70 |
+
P1365 replaces
|
71 |
+
P86 composer
|
72 |
+
P8402 open data portal
|
73 |
+
P1441 present in work
|
74 |
+
P2936 language used
|
75 |
+
P610 highest point
|
76 |
+
P2670 has part(s) of the class
|
77 |
+
P103 native language
|
78 |
+
P1303 instrument
|
79 |
+
P166 award received
|
80 |
+
P8744 economy of topic
|
81 |
+
P1454 legal form
|
82 |
+
P6216 copyright status
|
83 |
+
P793 significant event
|
84 |
+
P2175 medical condition treated
|
85 |
+
P171 parent taxon
|
86 |
+
P437 distribution format
|
87 |
+
P734 family name
|
88 |
+
P1582 natural product of taxon
|
89 |
+
P2354 has list
|
90 |
+
P421 located in time zone
|
91 |
+
P452 industry
|
92 |
+
P36 capital
|
93 |
+
P407 language of work or name
|
94 |
+
P735 given name
|
95 |
+
P7763 copyright status as a creator
|
96 |
+
P1542 has effect
|
97 |
+
P1424 topic's main template
|
98 |
+
P122 basic form of government
|
99 |
+
P205 basin country
|
100 |
+
P37 official language
|
101 |
+
P710 participant
|
102 |
+
P69 educated at
|
103 |
+
P1382 partially coincident with
|
104 |
+
P1465 category for people who died here
|
105 |
+
P20 place of death
|
106 |
+
P703 found in taxon
|
107 |
+
P737 influenced by
|
108 |
+
P1196 manner of death
|
109 |
+
P6104 maintained by WikiProject
|
110 |
+
P5869 model item
|
111 |
+
P170 creator
|
112 |
+
P1535 used by
|
113 |
+
P138 named after
|
114 |
+
P19 place of birth
|
115 |
+
P156 followed by
|
116 |
+
P272 production company
|
117 |
+
P1479 has contributing factor
|
118 |
+
P1557 manifestation of
|
119 |
+
P129 physically interacts with
|
120 |
+
P127 owned by
|
121 |
+
P417 patron saint
|
122 |
+
P39 position held
|
123 |
+
P706 located in/on physical feature
|
124 |
+
P9241 demographics of topic
|
125 |
+
P5658 railway traffic side
|
126 |
+
P1622 driving side
|
127 |
+
P551 residence
|
128 |
+
P61 discoverer or inventor
|
129 |
+
P425 field of this occupation
|
130 |
+
P172 ethnic group
|
131 |
+
P1344 participant in
|
132 |
+
P6886 writing language
|
133 |
+
P1376 capital of
|
134 |
+
P1313 office held by head of government
|
135 |
+
P7867 category for maps
|
136 |
+
P832 public holiday
|
137 |
+
P57 director
|
138 |
+
P141 IUCN conservation status
|
139 |
+
P180 depicts
|
140 |
+
P344 director of photography
|
141 |
+
P2789 connects with
|
142 |
+
P509 cause of death
|
143 |
+
P517 interaction
|
144 |
+
P1366 replaced by
|
145 |
+
P2868 subject has role
|
146 |
+
P2596 culture
|
147 |
+
P1589 lowest point
|
148 |
+
P1672 this taxon is source of
|
149 |
+
P641 sport
|
150 |
+
P1791 category of people buried here
|
151 |
+
P400 platform
|
152 |
+
P8989 category for the view of the item
|
153 |
+
P937 work location
|
154 |
+
P111 measured physical quantity
|
155 |
+
P2633 geography of topic
|
156 |
+
P1830 owner of
|
157 |
+
P301 category's main topic
|
158 |
+
P35 head of state
|
159 |
+
P618 source of energy
|
160 |
+
P58 screenwriter
|
161 |
+
P4952 safety classification and labelling
|
162 |
+
P1740 category for films shot at this location
|
163 |
+
P108 employer
|
164 |
+
P840 narrative location
|
165 |
+
P121 item operated
|
166 |
+
P194 legislative body
|
167 |
+
P277 programming language
|
168 |
+
P161 cast member
|
169 |
+
P291 place of publication
|
170 |
+
P195 collection
|
171 |
+
P50 author
|
172 |
+
P85 anthem
|
173 |
+
P40 child
|
174 |
+
A0 synonym
|
175 |
+
A1 antonym
|
176 |
+
A2 prerequisite
|
177 |
+
A3 identical to
|
178 |
+
A4 juxtaposition to
|
179 |
+
A5 contradictory to
|
180 |
+
A6 intersection to
|
181 |
+
A7 probabilistic attribute
|
182 |
+
A8 metaphor
|
183 |
+
A9 takes place in
|
184 |
+
A10 tool of
|
185 |
+
A11 target of
|
186 |
+
A12 corresponds to
|
187 |
+
A13 follow
|
188 |
+
A14 sufficient to
|
189 |
+
A15 verb-object
|
190 |
+
A16 head-modifier
|
191 |
+
A17 subject-object
|
192 |
+
A18 subject-predicate
|
dataset/MarKG/relation2textlong.txt
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
P31 that class of which this subject is a particular example and member; different from P279 (subclass of); for example: K2 is an instance of mountain; volcano is a subclass of mountain (and an instance of volcanic landform)
|
2 |
+
P910 main Wikimedia category
|
3 |
+
P366 main use of the subject (includes current and former usage)
|
4 |
+
P5008 property to indicate that an item is of particular interest for a Wikimedia project. This property does not add notability. Items should not be created with this property if they are not notable for Wikidata. See also P6104, P972, P2354.
|
5 |
+
P1740 the object is a category for films shot at or in the subject
|
6 |
+
P47 countries or administrative subdivisions, of equal level, that this item borders, either by land or water. A single common point is enough.
|
7 |
+
P1151 Wikimedia portal associated with this topic
|
8 |
+
P937 location where persons or organisations were actively participating in employment, business or other work
|
9 |
+
P264 brand and trademark associated with the marketing of subject music recordings and music videos
|
10 |
+
P421 time zone for this item
|
11 |
+
P1552 the entity has an inherent or distinguishing non-material characteristic
|
12 |
+
P1343 work where this item is described
|
13 |
+
P1269 topic of which this item is an aspect, item that offers a broader perspective on the same topic
|
14 |
+
P37 language designated as official by this item
|
15 |
+
P361 object of which the subject is a part (if this subject is already part of object A which is a part of object B, then please only make the subject part of object A). Inverse property of "has part" (P527, see also "has parts of the class" (P2670)).
|
16 |
+
P530 diplomatic relations of the country
|
17 |
+
P527 part of this subject; inverse property of "part of" (P361). See also "has parts of the class" (P2670).
|
18 |
+
P106 occupation of a person; see also "field of work" (Property:P101), "position held" (Property:P39)
|
19 |
+
P6886 language in which the writer has written their work
|
20 |
+
P279 this item is a subclass (subset) of that item; all instances of these items are instances of those items; different from P31 (instance of), e.g.: K2 is an instance of mountain; volcano is a subclass of mountain (and an instance of volcanic landform).
|
21 |
+
P1622 side of the road that vehicles drive on in a given jurisdiction
|
22 |
+
P750 distributor of a creative work; distributor for a record label; news agency; film distributor
|
23 |
+
P27 the object is a country that recognizes the subject as its citizen
|
24 |
+
P180 entity visually depicted in an image, literarily described in a work, or otherwise incorporated into an audiovisual or other medium; see also P921, 'main subject'
|
25 |
+
P131 the item is located on the territory of the following administrative entity. Use P276 for specifying locations that are non-administrative places and for items about events. Use P1382 if the item falls only partially into the administrative entity.
|
26 |
+
P6379 collection that has works of this person or organisation (use archive location P485 for the archives)
|
27 |
+
P1424 the main template relating to a topic
|
28 |
+
P17 sovereign state of this item (not to be used for human beings)
|
29 |
+
P1672 links a taxon to natural products it produces. Note that it does not say "this taxon is the source of" or "this taxon is a source of" as this may vary. Some products may be yielded by more than one taxon.
|
30 |
+
P495 country of origin of this item (creative work, food, phrase, product, etc.)
|
31 |
+
P205 country that have drainage to/from or border the body of water
|
32 |
+
P2853 standard plug type for mains electricity in a country
|
33 |
+
P2670 the subject instance (the subject is not a class) has one or more parts of the object class
|
34 |
+
P190 twin towns, sister cities, twinned municipalities and other localities that have a partnership or cooperative agreement, either legally or informally acknowledged by their governments
|
35 |
+
P1412 language(s) that a person or a people speaks, writes or signs, including the native language(s)
|
36 |
+
P30 continent of which the subject is a part
|
37 |
+
P2341 place that a language, folk dance, cooking style, food, species or other cultural expression is found (or was originally found)
|
38 |
+
P1465 category item for people who died in this location
|
39 |
+
P1464 category item that groups people born in this place
|
40 |
+
P5658 indicates for a country or a railway line whether rail traffic usually runs on the left or right hand side
|
41 |
+
P1001 the item (institution, law, public office, public register...) or statement belongs to or has power over or applies to the value (a territorial jurisdiction: a country, state, municipality, ...)
|
42 |
+
P171 closest parent taxon of the taxon in question
|
43 |
+
P103 language or languages a person has learned from early childhood
|
44 |
+
P1542 effect of this item
|
45 |
+
P1382 object that is partially part of, but not fully part of (P361), the subject
|
46 |
+
P150 (list of) direct subdivisions of an administrative territorial entity
|
47 |
+
P1441 this (fictional or fictionalized) entity or person appears in that work as part of the narration (use P2860 for works citing other works, P361/P1433 for works being part of other works, P1343 for entities described in non-fictional accounts)
|
48 |
+
P1889 item that is different from another item, with which it may be confused
|
49 |
+
P832 official public holiday that occurs in this place in its honor, usually a non-working day
|
50 |
+
P136 creative work's genre or an artist's field of work (P101). Use main subject (P921) to relate creative works to their topic
|
51 |
+
P61 subject who discovered, first described, invented, or developed this discovery or invention
|
52 |
+
P156 immediately following item in a series of which the subject is a part, preferably use as qualifier of P179 [if the subject has been replaced, e.g. political offices, use "replaced by" (P1366)]
|
53 |
+
P20 most specific known (e.g. city instead of country, or hospital instead of city) death location of a person, animal or fictional character
|
54 |
+
P840 the narrative of the work is set in this location
|
55 |
+
P206 body of water on or next to which a place is located
|
56 |
+
P50 main creator(s) of a written work (use on works, not humans); use P2093 when Wikidata item is unknown or does not exist
|
57 |
+
P140 religion of a person, organization or religious building, or associated with this subject
|
58 |
+
P3095 type of agents that study this subject or work in this profession
|
59 |
+
P21 sex or gender identity of human or animal. For human: male, female, non-binary, intersex, transgender female, transgender male, agender. For animal: male organism, female organism. Groups of same gender use subclass of (P279)
|
60 |
+
P706 located on the specified (geo)physical feature. Should not be used when the value is only political/administrative (P131) or a mountain range (P4552).
|
61 |
+
P463 organization, club or musical group to which the subject belongs. Do not use for membership in ethnic or social groups, nor for holding a political position, such as a member of parliament (use P39 for that).
|
62 |
+
P2184 item about the historical development of an subject's topic, sample: "history of Argentina" for "Argentina". To list key events of the topic, use "significant event" (P793)
|
63 |
+
P19 most specific known (e.g. city instead of country, or hospital instead of city) birth location of a person, animal or fictional character
|
64 |
+
P509 underlying or immediate cause of death. Underlying cause (e.g. car accident, stomach cancer) preferred. Use 'manner of death' (P1196) for broadest category, e.g. natural causes, accident, homicide, suicide
|
65 |
+
P437 method (or type) of distribution for the subject
|
66 |
+
P122 subject's government
|
67 |
+
P2578 the object that an academic field studies; distinct from field of work (P101), which is used for human, organization, etc.
|
68 |
+
P166 award or recognition received by a person, organization or creative work
|
69 |
+
P7763 states if the body of work published during the lifetime of this creator is still copyrighted or in the public domain
|
70 |
+
P163 subject's flag
|
71 |
+
P6104 WikiProject that maintains this property, item, or linked pages. If the WikiProject is hosted outside of Wikidata, define the scope using the qualifier "of (P642)"
|
72 |
+
P170 maker of this creative work or other object (where no more specific property exists)
|
73 |
+
P105 level in a taxonomic hierarchy
|
74 |
+
P1303 musical instrument that a person plays or teaches or used in a music occupation
|
75 |
+
P111 value of a physical property expressed as number multiplied by a unit
|
76 |
+
P121 equipment, installation or service operated by the subject
|
77 |
+
P112 founder or co-founder of this organization, religion or place
|
78 |
+
P737 this person, idea, etc. is informed by that other person, idea, etc., e.g. “Heidegger was influenced by Aristotle”
|
79 |
+
P127 owner of the subject
|
80 |
+
P462 color of subject
|
81 |
+
P2936 language widely used (spoken or written) in this place or at this event
|
82 |
+
P2354 Wikimedia list related to this subject
|
83 |
+
P407 language associated with this creative work (such as books, shows, songs, broadcasts or websites) or a name (for persons use "native language" (P103) and "languages spoken, written or signed" (P1412))
|
84 |
+
P551 the place where the person is or has been, resident
|
85 |
+
P2579 subject is studied by this science or domain
|
86 |
+
P186 material the subject or the object is made of or derived from (do not confuse with P10672 which is used for processes)
|
87 |
+
P2852 telephone number to contact emergency services
|
88 |
+
P276 location of the object, structure or event. In the case of an administrative entity as containing item use P131. For statistical entities use P8138. In the case of a geographic entity use P706. Use P7153 for locations associated with the object.
|
89 |
+
P461 item that is the opposite of this item
|
90 |
+
P460 this item is said to be the same as that item, but it's uncertain or disputed
|
91 |
+
P1995 main specialty that diagnoses, prevent human illness, injury and other physical and mental impairments
|
92 |
+
P344 person responsible for the framing, lighting, and filtration of the subject work
|
93 |
+
P364 language in which a film or a performance work was originally created. Deprecated for written works and songs; use P407 ("language of work or name") instead.
|
94 |
+
P1792 Wikimedia category for people associated with this place or organization
|
95 |
+
P35 official with the highest formal authority in a country/state
|
96 |
+
P1454 legal form of an entity
|
97 |
+
P108 person or organization for which the subject works or worked
|
98 |
+
P175 actor, musician, band or other performer associated with this role or musical work
|
99 |
+
P5869 defines which item is a best practice example of modelling a subject, which is described by the value of this property, usage instructions at Wikidata:Model items
|
100 |
+
P703 the taxon in which the item can be found
|
101 |
+
P5125 item about an outline of the topic at Wikimedia sites
|
102 |
+
P9241 item that deals with demographics of the subject
|
103 |
+
P417 patron saint adopted by the subject
|
104 |
+
P57 director(s) of film, TV-series, stageplay, video game or similar
|
105 |
+
P1376 country, state, department, canton or other administrative division of which the municipality is the governmental seat
|
106 |
+
P85 subject's official anthem
|
107 |
+
P8989 category for the view of this item (object, place)
|
108 |
+
P272 company that produced this film, audio or performing arts work
|
109 |
+
P1589 point with lowest elevation in the country, region, city or area
|
110 |
+
P162 person(s) who produced the film, musical work, theatrical production, etc. (for film, this does not include executive producers, associate producers, etc.) [for production company, use P272, video games - use P178]
|
111 |
+
P1830 entities owned by the subject
|
112 |
+
P1535 item or concept that makes use of the subject (use sub-properties when appropriate)
|
113 |
+
P921 primary topic of a work (see also P180: depicts)
|
114 |
+
P7867 name of the Wikimedia category specifically for maps or plans of this item
|
115 |
+
P159 city, where an organization's headquarters is or has been situated. Use P276 qualifier for specific building
|
116 |
+
P161 actor in the subject production [use "character role" (P453) and/or "name of the character role" (P4633) as qualifiers] [use "voice actor" (P725) for voice-only role]
|
117 |
+
P6216 copyright status for intellectual creations like works of art, publications, software, etc.
|
118 |
+
P6 head of the executive power of this town, city, municipality, state, country, or other governmental body
|
119 |
+
P1479 thing that significantly influenced, but did not directly cause, this outcome or effect. Used in conjunction with 'has cause' and 'has immediate cause'. See '[[Help:Modeling causes]]'.
|
120 |
+
P828 underlying cause, thing that ultimately resulted in this effect
|
121 |
+
P301 primary topic of the subject Wikimedia category
|
122 |
+
P618 describes the source of energy an animated object (machine or animal) uses
|
123 |
+
P101 specialization of a person or organization; see P106 for the occupation
|
124 |
+
P1557 inherent and characteristic embodiment of a given concept
|
125 |
+
P793 significant or notable events associated with the subject
|
126 |
+
P2175 disease that this pharmaceutical drug, procedure, or therapy is used to treat
|
127 |
+
P452 specific industry of company or organization
|
128 |
+
P138 entity or event that inspired the subject's name, or namesake (in at least one language). Qualifier "applies to name" (P5168) can be used to indicate which one
|
129 |
+
P734 part of full name of person
|
130 |
+
P155 immediately prior item in a series of which the subject is a part, preferably use as qualifier of P179 [if the subject has replaced the preceding item, e.g. political offices, use "replaces" (P1365)]
|
131 |
+
P2283 item or concept used by the subject or in the operation (see also instrument [P1303] and armament [P520])
|
132 |
+
P1056 material or product produced by a government agency, business, industry, facility, or process
|
133 |
+
P400 platform for which a work was developed or released, or the specific platform version of a software product
|
134 |
+
P194 legislative body governing this entity; political institution with elected representatives, such as a parliament/legislature or council
|
135 |
+
P610 point with highest elevation in a region, or on the path of a race or route
|
136 |
+
P1582 links a natural product with its source (animal, plant, fungal, algal, etc.)
|
137 |
+
P8402 the item for the open data portal belonging to this entity
|
138 |
+
P1366 other person or item which continues the item by replacing it in its role. Use P156 ("followed by") if the item is not replaced nor identical, but adds to the series (e.g. books in a series).
|
139 |
+
P2079 method, process or technique used to grow, cook, weave, build, assemble, manufacture the item
|
140 |
+
P641 sport that the subject participates or participated in or is associated with
|
141 |
+
P517 subset of the four fundamental forces (strong (Q11415), electromagnetic (Q849919), weak (Q11418), and gravitation (Q11412) with which a particle interacts
|
142 |
+
P306 operating system (OS) on which a software works or the OS installed on hardware
|
143 |
+
P1365 person, state or item replaced. Use "structure replaces" (P1398) for structures. Use "follows" (P155) if the previous item was not replaced or predecessor and successor are identical
|
144 |
+
P86 person(s) who wrote the music [for lyricist, use "lyrics by" (P676)]
|
145 |
+
P740 location where a group or organization was formed
|
146 |
+
P36 seat of government of a country, province, state or other type of administrative territorial entity
|
147 |
+
P2868 role/generic identity of the item ("subject"), also in the context of a statement. For the role of the value of the statement ("object"), use P3831 ("object has role"). For acting roles, use P453 ("character role"). For persons, use P39.
|
148 |
+
P38 currency used by item
|
149 |
+
P425 field corresponding to this occupation or profession (use only for occupations/professions - for people use Property:P101, for companies use P452)
|
150 |
+
P710 person, group of people or organization (object) that actively takes/took part in an event or process (subject). Preferably qualify with "object has role" (P3831). Use P1923 for participants that are teams.
|
151 |
+
P39 subject currently or formerly holds the object position or public office
|
152 |
+
P172 subject's ethnicity (consensus is that a VERY high standard of proof is needed for this field to be used. In general this means 1) the subject claims it themselves, or 2) it is widely agreed on by scholars, or 3) is fictional and portrayed as such)
|
153 |
+
P282 alphabet, character set or other system of writing used by a language, supported by a typeface
|
154 |
+
P1435 heritage designation of a cultural or natural site
|
155 |
+
P141 conservation status assigned by the International Union for Conservation of Nature
|
156 |
+
P2596 human culture or people (or several cultures) associated with this item
|
157 |
+
P8744 item that deals with the economy of the subject
|
158 |
+
P69 educational institution attended by subject
|
159 |
+
P1344 event in which a person or organization was/is a participant; inverse of P710 or P1923
|
160 |
+
P1791 Wikimedia category for people with a burial site within this area
|
161 |
+
P195 art, museum, archival, or bibliographic collection the subject is part of
|
162 |
+
P1196 general circumstances of a person's death; e.g. natural causes, accident, suicide, homicide, etc. Use 'cause of death' (P509) for the specific physiological mechanism, e.g. heart attack, trauma, pneumonia...
|
163 |
+
P129 physical entity that the subject interacts with
|
164 |
+
P1313 political office that is fulfilled by the head of the government of this item
|
165 |
+
P291 geographical place of publication of the edition (use 1st edition when referring to works)
|
166 |
+
P2633 item that deals with the geography of the subject. Sample: "Rio de Janeiro" uses this property with value "geography of Rio de Janeiro" (Q10288853). For the location of a subject, use "location" (P276).
|
167 |
+
P2789 item with which the item is physically connected
|
168 |
+
P735 first name or another given name of this person; values used with the property should not link disambiguations nor family names
|
169 |
+
P4952 classification and labelling data for risk identification about chemicals
|
170 |
+
P40 subject has object as child. Do not use for stepchildren
|
171 |
+
P58 person(s) who wrote the script for subject item
|
172 |
+
P1433 larger work that a given work was published in, like a book, journal or music album
|
173 |
+
P277 the programming language(s) in which the software is developed
|
174 |
+
A0 Sense of another lexeme with the same meaning as this sense
|
175 |
+
A1 Sense of a lexeme with the opposite meaning to this sense
|
176 |
+
A2 Prior event or achievement that a person or team needs to complete before joining or obtaining the item topic
|
177 |
+
A3 The meanings of two terms are identical
|
178 |
+
A4 Two terms belong to the same hypernym or have the same properties or functions
|
179 |
+
A5 Two term are contradictory to each other
|
180 |
+
A6 The extension of the two terms intersects
|
181 |
+
A7 One term is probably the attribute of the other
|
182 |
+
A8 A term is the metaphor of the other, reflecting something abstract indirectly
|
183 |
+
A9 A term takes place in the other
|
184 |
+
A10 One term is the tool of the other
|
185 |
+
A11 One term is the target of the other
|
186 |
+
A12 Terms generally correspond to each other
|
187 |
+
A13 The terms have a chronological or other sequential relationship, but one term does not cause the other
|
188 |
+
A14 One term is a sufficient condition for the other
|
189 |
+
A15 The action and the object on which the action acts
|
190 |
+
A16 The preceding term modifies the other
|
191 |
+
A17 The originator and receiver of an action
|
192 |
+
A18 The originator of the action and the action itself
|
dataset/MarKG/wiki_tuple_ids.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modeling_unimo.py
ADDED
@@ -0,0 +1,976 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Optional, Tuple
|
2 |
+
import math
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import nn, Tensor, device
|
6 |
+
from torch.nn import CrossEntropyLoss
|
7 |
+
|
8 |
+
from transformers.activations import ACT2FN
|
9 |
+
from transformers.modeling_utils import (
|
10 |
+
PreTrainedModel,
|
11 |
+
apply_chunking_to_forward,
|
12 |
+
)
|
13 |
+
from transformers.configuration_utils import PretrainedConfig
|
14 |
+
from transformers.modeling_outputs import (
|
15 |
+
BaseModelOutput,
|
16 |
+
MaskedLMOutput,
|
17 |
+
BaseModelOutputWithPooling,
|
18 |
+
)
|
19 |
+
|
20 |
+
# some function
|
21 |
+
def get_extended_attention_mask(attention_mask: Tensor, input_shape: Tuple[int], device: device) -> Tensor:
|
22 |
+
"""
|
23 |
+
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
|
24 |
+
|
25 |
+
Arguments:
|
26 |
+
attention_mask (:obj:`torch.Tensor`):
|
27 |
+
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
|
28 |
+
input_shape (:obj:`Tuple[int]`):
|
29 |
+
The shape of the input to the model.
|
30 |
+
device: (:obj:`torch.device`):
|
31 |
+
The device of the input to the model.
|
32 |
+
|
33 |
+
Returns:
|
34 |
+
:obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
|
35 |
+
"""
|
36 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
37 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
38 |
+
if attention_mask.dim() == 3:
|
39 |
+
extended_attention_mask = attention_mask[:, None, :, :]
|
40 |
+
elif attention_mask.dim() == 2:
|
41 |
+
# Provided a padding mask of dimensions [batch_size, seq_length]
|
42 |
+
# - if the model is a decoder, apply a causal mask in addition to the padding mask
|
43 |
+
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
44 |
+
extended_attention_mask = attention_mask[:, None, None, :]
|
45 |
+
else:
|
46 |
+
raise ValueError(
|
47 |
+
f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})"
|
48 |
+
)
|
49 |
+
|
50 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
51 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
52 |
+
# positions we want to attend and -10000.0 for masked positions.
|
53 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
54 |
+
# effectively the same as removing these entirely.
|
55 |
+
extended_attention_mask = extended_attention_mask.to(dtype=torch.long) # fp16 compatibility
|
56 |
+
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
57 |
+
return extended_attention_mask
|
58 |
+
|
59 |
+
|
60 |
+
def get_head_mask(
|
61 |
+
head_mask: Optional[Tensor], num_hidden_layers: int, is_attention_chunked: bool = False
|
62 |
+
) -> Tensor:
|
63 |
+
"""
|
64 |
+
Prepare the head mask if needed.
|
65 |
+
|
66 |
+
Args:
|
67 |
+
head_mask (:obj:`torch.Tensor` with shape :obj:`[num_heads]` or :obj:`[num_hidden_layers x num_heads]`, `optional`):
|
68 |
+
The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard).
|
69 |
+
num_hidden_layers (:obj:`int`):
|
70 |
+
The number of hidden layers in the model.
|
71 |
+
is_attention_chunked: (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
72 |
+
Whether or not the attentions scores are computed by chunks or not.
|
73 |
+
|
74 |
+
Returns:
|
75 |
+
:obj:`torch.Tensor` with shape :obj:`[num_hidden_layers x batch x num_heads x seq_length x seq_length]` or
|
76 |
+
list with :obj:`[None]` for each layer.
|
77 |
+
"""
|
78 |
+
head_mask = [None] * num_hidden_layers
|
79 |
+
|
80 |
+
return head_mask
|
81 |
+
|
82 |
+
|
83 |
+
# models
|
84 |
+
class UnimoConfig(PretrainedConfig):
|
85 |
+
|
86 |
+
def __init__(self, **kwargs):
|
87 |
+
super().__init__(**kwargs)
|
88 |
+
|
89 |
+
|
90 |
+
class UnimoPreTrainedModel(PreTrainedModel):
|
91 |
+
config_class = UnimoConfig
|
92 |
+
base_model_prefix = "clip"
|
93 |
+
supports_gradient_checkpointing = True
|
94 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
95 |
+
|
96 |
+
def __init_weights(self, module):
|
97 |
+
pass
|
98 |
+
|
99 |
+
|
100 |
+
class CLIPVisionEmbeddings(nn.Module):
|
101 |
+
def __init__(self, config):
|
102 |
+
super().__init__()
|
103 |
+
self.config = config
|
104 |
+
self.embed_dim = config.hidden_size
|
105 |
+
self.image_size = config.image_size
|
106 |
+
self.patch_size = config.patch_size
|
107 |
+
|
108 |
+
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
|
109 |
+
|
110 |
+
self.patch_embedding = nn.Conv2d(
|
111 |
+
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size, bias=False
|
112 |
+
)
|
113 |
+
|
114 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
115 |
+
self.num_positions = self.num_patches + 1
|
116 |
+
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
117 |
+
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)))
|
118 |
+
|
119 |
+
def forward(self, pixel_values):
|
120 |
+
# pixel_values: (bsz, 2, 3, 224, 224)
|
121 |
+
batch_size = pixel_values.shape[0]
|
122 |
+
patch_embeds = torch.cat([
|
123 |
+
self.patch_embedding(pixel_values[:, 0]).flatten(2).transpose(1, 2),
|
124 |
+
self.patch_embedding(pixel_values[:, 1]).flatten(2).transpose(1, 2)],
|
125 |
+
dim=1
|
126 |
+
) # bsz, 98, 768
|
127 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
|
128 |
+
|
129 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
130 |
+
embeddings = embeddings + torch.cat([self.position_embedding(self.position_ids), self.position_embedding(self.position_ids)[:, 1:]], dim=1)
|
131 |
+
|
132 |
+
return embeddings
|
133 |
+
|
134 |
+
|
135 |
+
class BertEmbeddings(nn.Module):
|
136 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
137 |
+
|
138 |
+
def __init__(self, config):
|
139 |
+
super().__init__()
|
140 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
141 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
142 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
143 |
+
|
144 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
145 |
+
# any TensorFlow checkpoint file
|
146 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
147 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
148 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
149 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
150 |
+
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
151 |
+
|
152 |
+
def forward(
|
153 |
+
self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
|
154 |
+
):
|
155 |
+
if input_ids is not None:
|
156 |
+
input_shape = input_ids.size()
|
157 |
+
else:
|
158 |
+
input_shape = inputs_embeds.size()[:-1]
|
159 |
+
|
160 |
+
seq_length = input_shape[1]
|
161 |
+
|
162 |
+
if position_ids is None:
|
163 |
+
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
|
164 |
+
|
165 |
+
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
166 |
+
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
167 |
+
# issue #5664
|
168 |
+
if token_type_ids is None:
|
169 |
+
if hasattr(self, "token_type_ids"):
|
170 |
+
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
171 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
|
172 |
+
token_type_ids = buffered_token_type_ids_expanded
|
173 |
+
else:
|
174 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
175 |
+
|
176 |
+
if inputs_embeds is None:
|
177 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
178 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
179 |
+
|
180 |
+
embeddings = inputs_embeds + token_type_embeddings
|
181 |
+
if self.position_embedding_type == "absolute":
|
182 |
+
position_embeddings = self.position_embeddings(position_ids)
|
183 |
+
embeddings += position_embeddings
|
184 |
+
embeddings = self.LayerNorm(embeddings)
|
185 |
+
embeddings = self.dropout(embeddings)
|
186 |
+
return embeddings
|
187 |
+
|
188 |
+
|
189 |
+
class CLIPAttention(nn.Module):
|
190 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
191 |
+
|
192 |
+
def __init__(self, config):
|
193 |
+
super().__init__()
|
194 |
+
self.config = config
|
195 |
+
self.embed_dim = config.hidden_size
|
196 |
+
self.num_heads = config.num_attention_heads
|
197 |
+
self.head_dim = self.embed_dim // self.num_heads
|
198 |
+
assert (
|
199 |
+
self.head_dim * self.num_heads == self.embed_dim
|
200 |
+
), f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})."
|
201 |
+
self.scale = self.head_dim ** -0.5
|
202 |
+
self.dropout = config.attention_dropout
|
203 |
+
|
204 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
205 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
206 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
207 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
208 |
+
|
209 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
210 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
211 |
+
|
212 |
+
def forward(
|
213 |
+
self,
|
214 |
+
hidden_states: torch.Tensor,
|
215 |
+
output_attentions: bool = False,
|
216 |
+
past_key_values: torch.Tensor = None,
|
217 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
218 |
+
"""Input shape: Batch x Time x Channel"""
|
219 |
+
|
220 |
+
bsz, tgt_len, embed_dim = hidden_states.size()
|
221 |
+
|
222 |
+
# get query proj
|
223 |
+
query_states = self.q_proj(hidden_states) * self.scale
|
224 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
225 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
226 |
+
|
227 |
+
if past_key_values is not None:
|
228 |
+
key_states = torch.cat([past_key_values[0], key_states], dim=2)
|
229 |
+
value_states = torch.cat([past_key_values[1], value_states], dim=2)
|
230 |
+
|
231 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
232 |
+
query_states = self._shape(query_states, tgt_len, bsz)
|
233 |
+
|
234 |
+
query_states = query_states.view(*proj_shape)
|
235 |
+
key_states = key_states.view(*proj_shape)
|
236 |
+
value_states = value_states.view(*proj_shape)
|
237 |
+
|
238 |
+
src_len = key_states.size(1)
|
239 |
+
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
240 |
+
|
241 |
+
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
242 |
+
raise ValueError(
|
243 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}"
|
244 |
+
)
|
245 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
246 |
+
|
247 |
+
if output_attentions:
|
248 |
+
# this operation is a bit akward, but it's required to
|
249 |
+
# make sure that attn_weights keeps its gradient.
|
250 |
+
# In order to do so, attn_weights have to reshaped
|
251 |
+
# twice and have to be reused in the following
|
252 |
+
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
253 |
+
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
254 |
+
else:
|
255 |
+
attn_weights_reshaped = None
|
256 |
+
|
257 |
+
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
258 |
+
|
259 |
+
attn_output = torch.bmm(attn_probs, value_states)
|
260 |
+
|
261 |
+
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
262 |
+
raise ValueError(
|
263 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {attn_output.size()}"
|
264 |
+
)
|
265 |
+
|
266 |
+
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
267 |
+
attn_output = attn_output.transpose(1, 2)
|
268 |
+
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
|
269 |
+
|
270 |
+
attn_output = self.out_proj(attn_output)
|
271 |
+
|
272 |
+
return attn_output, attn_weights_reshaped
|
273 |
+
|
274 |
+
|
275 |
+
class CLIPMLP(nn.Module):
|
276 |
+
def __init__(self, config):
|
277 |
+
super().__init__()
|
278 |
+
self.config = config
|
279 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
280 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
281 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
282 |
+
|
283 |
+
def forward(self, hidden_states):
|
284 |
+
hidden_states = self.fc1(hidden_states)
|
285 |
+
hidden_states = self.activation_fn(hidden_states)
|
286 |
+
hidden_states = self.fc2(hidden_states)
|
287 |
+
return hidden_states
|
288 |
+
|
289 |
+
|
290 |
+
class BertSelfAttention(nn.Module):
|
291 |
+
def __init__(self, config):
|
292 |
+
super().__init__()
|
293 |
+
self.num_attention_heads = config.num_attention_heads # 12
|
294 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) # 64
|
295 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size # 768
|
296 |
+
|
297 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
298 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
299 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
300 |
+
|
301 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
302 |
+
self.fusion = BertFusion(config) #
|
303 |
+
|
304 |
+
# # adaptive analogy mask
|
305 |
+
# self.adaptive_weight = nn.ParameterList([
|
306 |
+
# # nn.Parameter(torch.FloatTensor(1).uniform_(1.0, 2.5)), # example to query
|
307 |
+
# # nn.Parameter(torch.FloatTensor(1).uniform_(1.0, 2.5)) # query to example
|
308 |
+
# nn.Parameter(torch.FloatTensor(1).uniform_(0.0, 0.5)), # example to query
|
309 |
+
# nn.Parameter(torch.FloatTensor(1).uniform_(0.5, 0.5)) # query to example
|
310 |
+
# ])
|
311 |
+
|
312 |
+
def transpose_for_scores(self, x):
|
313 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
314 |
+
x = x.view(*new_x_shape)
|
315 |
+
return x.permute(0, 2, 1, 3)
|
316 |
+
|
317 |
+
def forward(
|
318 |
+
self,
|
319 |
+
hidden_states,
|
320 |
+
attention_mask=None,
|
321 |
+
head_mask=None,
|
322 |
+
output_attentions=False,
|
323 |
+
visual_hidden_state=None,
|
324 |
+
output_qks=None,
|
325 |
+
sep_idx=None
|
326 |
+
):
|
327 |
+
mixed_query_layer = self.query(hidden_states)
|
328 |
+
|
329 |
+
# If this is instantiated as a cross-attention module, the keys
|
330 |
+
# and values come from an encoder; the attention mask needs to be
|
331 |
+
# such that the encoder's padding tokens are not attended to.
|
332 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
333 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
334 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
335 |
+
|
336 |
+
qks = (key_layer, value_layer) if output_qks else None
|
337 |
+
|
338 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
339 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
340 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
341 |
+
|
342 |
+
# if sep_idx is not None:
|
343 |
+
# for i, idx in enumerate(sep_idx):
|
344 |
+
# # example to answer
|
345 |
+
# # attention_scores[i, :, :idx[2], idx[2]:] = torch.sigmoid(self.adaptive_weight[0]) * attention_scores[i, :, :idx[2], idx[2]:].clone()
|
346 |
+
# attention_scores[i, :, :idx[2], idx[2]:] = torch.clamp(self.adaptive_weight[0], 0, 0.5) * attention_scores[i, :, :idx[2], idx[2]:].clone()
|
347 |
+
# # answer to example
|
348 |
+
# # attention_scores[i, :, idx[2]:, idx[2]:] = torch.sigmoid(self.adaptive_weight[1]) * attention_scores[i, :, idx[2]:, idx[2]:].clone()
|
349 |
+
# attention_scores[i, :, idx[2]:, idx[2]:] = torch.clamp(self.adaptive_weight[1], 0.5, 1) * attention_scores[i, :, idx[2]:, idx[2]:].clone()
|
350 |
+
|
351 |
+
if attention_mask is not None:
|
352 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
353 |
+
'''add adaptive analogy mask, attention_scores ~ (bsz, 12, seq_len, seq_len), attention_mask ~ (bsz, 1, seq_len, seq_len)'''
|
354 |
+
|
355 |
+
attention_scores = attention_scores + attention_mask
|
356 |
+
|
357 |
+
# Normalize the attention scores to probabilities.
|
358 |
+
attention_probs = nn.Softmax(dim=-1)(attention_scores)
|
359 |
+
|
360 |
+
# This is actually dropping out entire tokens to attend to, which might
|
361 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
362 |
+
attention_probs = self.dropout(attention_probs)
|
363 |
+
|
364 |
+
# Mask heads if we want to
|
365 |
+
if head_mask is not None:
|
366 |
+
attention_probs = attention_probs * head_mask
|
367 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
368 |
+
|
369 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
370 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
371 |
+
context_layer = context_layer.view(*new_context_layer_shape) # bsz, 128, 768
|
372 |
+
|
373 |
+
fusion_output = self.fusion(context_layer, visual_hidden_state) if visual_hidden_state is not None else None # add
|
374 |
+
|
375 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
376 |
+
|
377 |
+
return outputs, fusion_output, qks
|
378 |
+
|
379 |
+
|
380 |
+
class BertSelfOutput(nn.Module):
|
381 |
+
def __init__(self, config):
|
382 |
+
super().__init__()
|
383 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
384 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
385 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
386 |
+
|
387 |
+
def forward(self, hidden_states, input_tensor):
|
388 |
+
hidden_states = self.dense(hidden_states)
|
389 |
+
hidden_states = self.dropout(hidden_states)
|
390 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
391 |
+
return hidden_states
|
392 |
+
|
393 |
+
|
394 |
+
class BertFusion(nn.Module):
|
395 |
+
def __init__(self, config):
|
396 |
+
super().__init__()
|
397 |
+
# self.fusion_function = config.fusion_function
|
398 |
+
self.fusion_function = 'softmax'
|
399 |
+
|
400 |
+
def forward(
|
401 |
+
self,
|
402 |
+
hidden_states,
|
403 |
+
visual_hidden_state=None,
|
404 |
+
):
|
405 |
+
fusion_scores = torch.matmul(hidden_states, visual_hidden_state.transpose(-1, -2)) # bsz, 128, 49
|
406 |
+
# if attention_mask is not None:
|
407 |
+
# # attention_mask: bsz, 1, 1, 128; fusion_scores: bsz, 128, 49
|
408 |
+
# fusion_scores = fusion_scores + attention_mask.squeeze(1).transpose(1, 2)
|
409 |
+
if self.fusion_function == 'softmax':
|
410 |
+
fusion_probs = nn.Softmax(dim=-1)(fusion_scores)
|
411 |
+
fusion_output = torch.matmul(fusion_probs, visual_hidden_state)
|
412 |
+
elif self.fusion_function == 'max':
|
413 |
+
fusion_probs = fusion_scores.max(dim=-1)
|
414 |
+
return fusion_output
|
415 |
+
|
416 |
+
|
417 |
+
class BertAttention(nn.Module):
|
418 |
+
def __init__(self, config):
|
419 |
+
super().__init__()
|
420 |
+
self.self = BertSelfAttention(config)
|
421 |
+
self.output = BertSelfOutput(config)
|
422 |
+
self.pruned_heads = set()
|
423 |
+
|
424 |
+
def forward(
|
425 |
+
self,
|
426 |
+
hidden_states,
|
427 |
+
attention_mask=None,
|
428 |
+
head_mask=None,
|
429 |
+
output_attentions=False,
|
430 |
+
visual_hidden_state=None,
|
431 |
+
output_qks=None,
|
432 |
+
sep_idx=None,
|
433 |
+
):
|
434 |
+
self_outputs, fusion_output, qks = self.self(
|
435 |
+
hidden_states,
|
436 |
+
attention_mask,
|
437 |
+
head_mask,
|
438 |
+
output_attentions,
|
439 |
+
visual_hidden_state,
|
440 |
+
output_qks,
|
441 |
+
sep_idx
|
442 |
+
)
|
443 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
444 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
445 |
+
return outputs, fusion_output, qks
|
446 |
+
|
447 |
+
|
448 |
+
class BertIntermediate(nn.Module):
|
449 |
+
def __init__(self, config):
|
450 |
+
super().__init__()
|
451 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
452 |
+
self.fusion_dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
453 |
+
if isinstance(config.hidden_act, str):
|
454 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
455 |
+
else:
|
456 |
+
self.intermediate_act_fn = config.hidden_act
|
457 |
+
|
458 |
+
def forward(self, hidden_states, fusion_output=None):
|
459 |
+
hidden_states = self.dense(hidden_states)
|
460 |
+
if fusion_output is not None:
|
461 |
+
fusion_states = self.fusion_dense(fusion_output)
|
462 |
+
hidden_states = hidden_states + fusion_states
|
463 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
464 |
+
return hidden_states
|
465 |
+
|
466 |
+
|
467 |
+
class BertOutput(nn.Module):
|
468 |
+
def __init__(self, config):
|
469 |
+
super().__init__()
|
470 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
471 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
472 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
473 |
+
|
474 |
+
def forward(self, hidden_states, input_tensor):
|
475 |
+
hidden_states = self.dense(hidden_states)
|
476 |
+
hidden_states = self.dropout(hidden_states)
|
477 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
478 |
+
return hidden_states
|
479 |
+
|
480 |
+
|
481 |
+
class CLIPEncoderLayer(nn.Module):
|
482 |
+
def __init__(self, config):
|
483 |
+
super().__init__()
|
484 |
+
self.embed_dim = config.hidden_size
|
485 |
+
self.self_attn = CLIPAttention(config)
|
486 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim)
|
487 |
+
self.mlp = CLIPMLP(config)
|
488 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim)
|
489 |
+
|
490 |
+
def forward(
|
491 |
+
self,
|
492 |
+
hidden_states: torch.Tensor,
|
493 |
+
output_attentions: bool = False,
|
494 |
+
past_key_values: torch.Tensor = None,
|
495 |
+
):
|
496 |
+
"""
|
497 |
+
Args:
|
498 |
+
hidden_states (:obj:`torch.FloatTensor`): input to the layer of shape :obj:`(seq_len, batch, embed_dim)`
|
499 |
+
attention_mask (:obj:`torch.FloatTensor`): attention mask of size
|
500 |
+
:obj:`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
501 |
+
layer_head_mask (:obj:`torch.FloatTensor`): mask for attention heads in a given layer of size
|
502 |
+
:obj:`(config.encoder_attention_heads,)`.
|
503 |
+
output_attentions (:obj:`bool`, `optional`):
|
504 |
+
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under
|
505 |
+
returned tensors for more detail.
|
506 |
+
"""
|
507 |
+
residual = hidden_states
|
508 |
+
|
509 |
+
hidden_states = self.layer_norm1(hidden_states)
|
510 |
+
hidden_states, attn_weights = self.self_attn(
|
511 |
+
hidden_states=hidden_states,
|
512 |
+
output_attentions=output_attentions,
|
513 |
+
past_key_values=past_key_values,
|
514 |
+
)
|
515 |
+
hidden_states = residual + hidden_states
|
516 |
+
|
517 |
+
residual = hidden_states
|
518 |
+
hidden_states = self.layer_norm2(hidden_states)
|
519 |
+
hidden_states = self.mlp(hidden_states)
|
520 |
+
hidden_states = residual + hidden_states
|
521 |
+
|
522 |
+
outputs = (hidden_states,)
|
523 |
+
|
524 |
+
if output_attentions:
|
525 |
+
outputs += (attn_weights,)
|
526 |
+
|
527 |
+
return outputs
|
528 |
+
|
529 |
+
|
530 |
+
class BertLayer(nn.Module):
|
531 |
+
def __init__(self, config):
|
532 |
+
super().__init__()
|
533 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
534 |
+
self.seq_len_dim = 1
|
535 |
+
self.attention = BertAttention(config)
|
536 |
+
self.add_cross_attention = config.add_cross_attention
|
537 |
+
self.intermediate = BertIntermediate(config)
|
538 |
+
self.output = BertOutput(config)
|
539 |
+
|
540 |
+
def forward(
|
541 |
+
self,
|
542 |
+
hidden_states,
|
543 |
+
attention_mask=None,
|
544 |
+
head_mask=None,
|
545 |
+
output_attentions=False,
|
546 |
+
visual_hidden_state=None,
|
547 |
+
output_qks=None,
|
548 |
+
sep_idx=None,
|
549 |
+
):
|
550 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
551 |
+
# self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
552 |
+
self_attention_outputs, fusion_output, qks = self.attention(
|
553 |
+
hidden_states,
|
554 |
+
attention_mask,
|
555 |
+
head_mask,
|
556 |
+
output_attentions=output_attentions,
|
557 |
+
visual_hidden_state=visual_hidden_state,
|
558 |
+
output_qks=output_qks,
|
559 |
+
sep_idx=sep_idx,
|
560 |
+
)
|
561 |
+
attention_output = self_attention_outputs[0]
|
562 |
+
|
563 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
564 |
+
|
565 |
+
layer_output = apply_chunking_to_forward(
|
566 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output, fusion_output
|
567 |
+
)
|
568 |
+
outputs = (layer_output,) + outputs
|
569 |
+
if output_qks:
|
570 |
+
outputs += (qks,)
|
571 |
+
|
572 |
+
return outputs
|
573 |
+
|
574 |
+
def feed_forward_chunk(self, attention_output, fusion_output):
|
575 |
+
intermediate_output = self.intermediate(attention_output, fusion_output)
|
576 |
+
layer_output = self.output(intermediate_output, attention_output)
|
577 |
+
return layer_output
|
578 |
+
|
579 |
+
|
580 |
+
class UnimoEncoder(nn.Module):
|
581 |
+
def __init__(self, vision_config, text_config):
|
582 |
+
super().__init__()
|
583 |
+
self.vision_config = vision_config
|
584 |
+
self.text_config = text_config
|
585 |
+
|
586 |
+
self.vision_layers = nn.ModuleList([CLIPEncoderLayer(vision_config) for _ in range(vision_config.num_hidden_layers)])
|
587 |
+
self.text_layer = nn.ModuleList([BertLayer(text_config) for _ in range(text_config.num_hidden_layers)])
|
588 |
+
|
589 |
+
def forward(
|
590 |
+
self,
|
591 |
+
vision_embeds=None,
|
592 |
+
text_embeds=None,
|
593 |
+
attention_mask=None,
|
594 |
+
head_mask=None,
|
595 |
+
output_attentions=None,
|
596 |
+
output_hidden_states=None,
|
597 |
+
return_dict=None,
|
598 |
+
sep_idx=None,
|
599 |
+
):
|
600 |
+
assert self.vision_config.num_hidden_layers == self.text_config.num_hidden_layers
|
601 |
+
|
602 |
+
all_vision_hidden_states = () if output_hidden_states else None
|
603 |
+
all_text_hidden_states = () if output_hidden_states else None
|
604 |
+
all_vision_attentions = () if output_attentions else None
|
605 |
+
all_text_attentions = () if output_attentions else None
|
606 |
+
|
607 |
+
vision_hidden_states = vision_embeds
|
608 |
+
text_hidden_states = text_embeds
|
609 |
+
for idx in range(self.vision_config.num_hidden_layers):
|
610 |
+
if output_hidden_states:
|
611 |
+
all_vision_hidden_states = all_vision_hidden_states + (vision_hidden_states, )
|
612 |
+
all_text_hidden_states = all_text_hidden_states + (text_hidden_states, )
|
613 |
+
|
614 |
+
# vision
|
615 |
+
# TODO: 9-12 layers past text as pkv to vision
|
616 |
+
past_key_values = text_layer_output[-1] if idx >= 8 else None
|
617 |
+
vision_layer_module = self.vision_layers[idx]
|
618 |
+
vision_layer_output = vision_layer_module(
|
619 |
+
vision_hidden_states,
|
620 |
+
output_attentions=output_attentions,
|
621 |
+
past_key_values=past_key_values,
|
622 |
+
)
|
623 |
+
vision_hidden_states = vision_layer_output[0]
|
624 |
+
|
625 |
+
# text
|
626 |
+
# TODO: 9-12 layers past vison qks to text
|
627 |
+
last_hidden_state = vision_hidden_states if idx >= 8 else None
|
628 |
+
output_qks = True if idx >= 7 else None
|
629 |
+
layer_head_mask = head_mask[idx] if head_mask is not None else None
|
630 |
+
text_layer_module = self.text_layer[idx]
|
631 |
+
text_layer_output = text_layer_module(
|
632 |
+
text_hidden_states,
|
633 |
+
attention_mask=attention_mask,
|
634 |
+
head_mask=layer_head_mask,
|
635 |
+
visual_hidden_state=last_hidden_state,
|
636 |
+
output_attentions=output_attentions,
|
637 |
+
output_qks=output_qks,
|
638 |
+
sep_idx=sep_idx,
|
639 |
+
)
|
640 |
+
text_hidden_states = text_layer_output[0]
|
641 |
+
if output_attentions:
|
642 |
+
all_vision_attentions = all_vision_attentions + (vision_layer_output[1], )
|
643 |
+
all_text_attentions = all_text_attentions + (text_layer_output[1], )
|
644 |
+
|
645 |
+
if output_hidden_states:
|
646 |
+
all_vision_hidden_states = all_vision_hidden_states + (vision_hidden_states, )
|
647 |
+
all_text_hidden_states = all_text_hidden_states + (text_hidden_states, )
|
648 |
+
|
649 |
+
if not return_dict:
|
650 |
+
return tuple(
|
651 |
+
v for v in [
|
652 |
+
text_hidden_states,
|
653 |
+
all_text_hidden_states,
|
654 |
+
all_text_attentions,
|
655 |
+
] if v is not None)
|
656 |
+
return BaseModelOutput(
|
657 |
+
last_hidden_state=text_hidden_states, hidden_states=all_text_hidden_states, attentions=all_text_attentions
|
658 |
+
)
|
659 |
+
|
660 |
+
|
661 |
+
class BertPooler(nn.Module):
|
662 |
+
def __init__(self, config):
|
663 |
+
super().__init__()
|
664 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
665 |
+
self.activation = nn.Tanh()
|
666 |
+
|
667 |
+
def forward(self, hidden_states):
|
668 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
669 |
+
# to the first token.
|
670 |
+
first_token_tensor = hidden_states[:, 0]
|
671 |
+
pooled_output = self.dense(first_token_tensor)
|
672 |
+
pooled_output = self.activation(pooled_output)
|
673 |
+
return pooled_output
|
674 |
+
|
675 |
+
|
676 |
+
class UnimoModel(nn.Module):
|
677 |
+
def __init__(self, vision_config, text_config, add_pooling_layer=True):
|
678 |
+
super(UnimoModel, self).__init__()
|
679 |
+
# vision model
|
680 |
+
self.vision_config = vision_config
|
681 |
+
self.vision_embeddings = CLIPVisionEmbeddings(vision_config)
|
682 |
+
self.vision_pre_layrnorm = nn.LayerNorm(vision_config.hidden_size)
|
683 |
+
self.vision_post_layernorm = nn.LayerNorm(vision_config.hidden_size)
|
684 |
+
|
685 |
+
# text model
|
686 |
+
self.text_config = text_config
|
687 |
+
self.text_embeddings = BertEmbeddings(text_config)
|
688 |
+
self.text_pooler = BertPooler(text_config) if add_pooling_layer else None
|
689 |
+
|
690 |
+
# all
|
691 |
+
self.encoder = UnimoEncoder(vision_config, text_config)
|
692 |
+
|
693 |
+
self.device = vision_config.device
|
694 |
+
|
695 |
+
def forward(
|
696 |
+
self,
|
697 |
+
input_ids=None,
|
698 |
+
attention_mask=None,
|
699 |
+
token_type_ids=None,
|
700 |
+
position_ids=None,
|
701 |
+
head_mask=None,
|
702 |
+
sep_idx=None,
|
703 |
+
|
704 |
+
pixel_values=None,
|
705 |
+
output_attentions=None,
|
706 |
+
output_hidden_states=None,
|
707 |
+
return_dict=None,
|
708 |
+
):
|
709 |
+
# pre vision
|
710 |
+
vision_embedding_output = self.vision_embeddings(pixel_values)
|
711 |
+
vision_embedding_output = self.vision_pre_layrnorm(vision_embedding_output)
|
712 |
+
|
713 |
+
# pre text
|
714 |
+
input_shape = input_ids.size()
|
715 |
+
batch_size, seq_length = input_shape
|
716 |
+
device = input_ids.device
|
717 |
+
if attention_mask is None:
|
718 |
+
attention_mask = torch.ones(((batch_size, seq_length)), device=device)
|
719 |
+
if token_type_ids is None:
|
720 |
+
if hasattr(self.text_embeddings, "token_type_ids"):
|
721 |
+
buffered_token_type_ids = self.text_embeddings.token_type_ids[:, :seq_length]
|
722 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
|
723 |
+
token_type_ids = buffered_token_type_ids_expanded
|
724 |
+
else:
|
725 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
726 |
+
|
727 |
+
|
728 |
+
extended_attention_mask: torch.Tensor = get_extended_attention_mask(attention_mask, input_shape, device)
|
729 |
+
head_mask = get_head_mask(head_mask, self.text_config.num_hidden_layers) # [None]*12
|
730 |
+
|
731 |
+
text_embedding_output = self.text_embeddings(
|
732 |
+
input_ids=input_ids,
|
733 |
+
position_ids=position_ids,
|
734 |
+
token_type_ids=token_type_ids,
|
735 |
+
)
|
736 |
+
|
737 |
+
# all encoder
|
738 |
+
encoder_outputs = self.encoder(
|
739 |
+
vision_embeds=vision_embedding_output,
|
740 |
+
text_embeds=text_embedding_output,
|
741 |
+
attention_mask=extended_attention_mask,
|
742 |
+
output_attentions=output_attentions,
|
743 |
+
output_hidden_states=output_hidden_states,
|
744 |
+
return_dict=return_dict,
|
745 |
+
sep_idx=sep_idx,
|
746 |
+
)
|
747 |
+
sequence_output = encoder_outputs[0]
|
748 |
+
pooled_output = self.text_pooler(sequence_output) if self.text_pooler is not None else None
|
749 |
+
|
750 |
+
if not return_dict:
|
751 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
752 |
+
|
753 |
+
return BaseModelOutputWithPooling(
|
754 |
+
last_hidden_state=sequence_output,
|
755 |
+
pooler_output=pooled_output,
|
756 |
+
hidden_states=encoder_outputs.hidden_states,
|
757 |
+
attentions=encoder_outputs.attentions,
|
758 |
+
)
|
759 |
+
|
760 |
+
def _init_text_weights(self, module):
|
761 |
+
"""Initialize the weights"""
|
762 |
+
if isinstance(module, nn.Linear):
|
763 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
764 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
765 |
+
module.weight.data.normal_(mean=0.0, std=self.text_config.initializer_range)
|
766 |
+
if module.bias is not None:
|
767 |
+
module.bias.data.zero_()
|
768 |
+
elif isinstance(module, nn.Embedding):
|
769 |
+
module.weight.data.normal_(mean=0.0, std=self.text_config.initializer_range)
|
770 |
+
if module.padding_idx is not None:
|
771 |
+
module.weight.data[module.padding_idx].zero_()
|
772 |
+
elif isinstance(module, nn.LayerNorm):
|
773 |
+
module.bias.data.zero_()
|
774 |
+
module.weight.data.fill_(1.0)
|
775 |
+
|
776 |
+
def get_input_embeddings(self):
|
777 |
+
return self.text_embeddings.word_embeddings
|
778 |
+
|
779 |
+
def set_input_embeddings(self, value):
|
780 |
+
self.text_embeddings.word_embeddings = value
|
781 |
+
|
782 |
+
def resize_token_embeddings(self, new_num_tokens):
|
783 |
+
old_embeddings = self.get_input_embeddings()
|
784 |
+
new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens)
|
785 |
+
self.set_input_embeddings(new_embeddings)
|
786 |
+
|
787 |
+
def _get_resized_embeddings(
|
788 |
+
self, old_embeddings: nn.Embedding, new_num_tokens: Optional[int] = None
|
789 |
+
) -> nn.Embedding:
|
790 |
+
"""
|
791 |
+
Build a resized Embedding Module from a provided token Embedding Module. Increasing the size will add newly
|
792 |
+
initialized vectors at the end. Reducing the size will remove vectors from the end
|
793 |
+
|
794 |
+
Args:
|
795 |
+
old_embeddings (:obj:`torch.nn.Embedding`):
|
796 |
+
Old embeddings to be resized.
|
797 |
+
new_num_tokens (:obj:`int`, `optional`):
|
798 |
+
New number of tokens in the embedding matrix.
|
799 |
+
|
800 |
+
Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
|
801 |
+
vectors from the end. If not provided or :obj:`None`, just returns a pointer to the input tokens
|
802 |
+
:obj:`torch.nn.Embedding`` module of the model without doing anything.
|
803 |
+
|
804 |
+
Return:
|
805 |
+
:obj:`torch.nn.Embedding`: Pointer to the resized Embedding Module or the old Embedding Module if
|
806 |
+
:obj:`new_num_tokens` is :obj:`None`
|
807 |
+
"""
|
808 |
+
if new_num_tokens is None:
|
809 |
+
return old_embeddings
|
810 |
+
else:
|
811 |
+
old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
|
812 |
+
|
813 |
+
if old_num_tokens == new_num_tokens:
|
814 |
+
return old_embeddings
|
815 |
+
|
816 |
+
if not isinstance(old_embeddings, nn.Embedding):
|
817 |
+
raise TypeError(
|
818 |
+
f"Old embeddings are of type {type(old_embeddings)}, which is not an instance of {nn.Embedding}."
|
819 |
+
f"You should either use a different resize function or make sure that `old_embeddings` are an instance of {nn.Embedding}."
|
820 |
+
)
|
821 |
+
|
822 |
+
# Build new embeddings
|
823 |
+
new_embeddings = nn.Embedding(new_num_tokens, old_embedding_dim).to(
|
824 |
+
self.device, dtype=old_embeddings.weight.dtype
|
825 |
+
)
|
826 |
+
|
827 |
+
# initialize all new embeddings (in particular added tokens)
|
828 |
+
self._init_text_weights(new_embeddings)
|
829 |
+
|
830 |
+
# Copy token embeddings from the previous weights
|
831 |
+
|
832 |
+
# numbers of tokens to copy
|
833 |
+
n = min(old_num_tokens, new_num_tokens)
|
834 |
+
new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :]
|
835 |
+
|
836 |
+
return new_embeddings
|
837 |
+
|
838 |
+
|
839 |
+
class UnimoForMaskedLM(nn.Module):
|
840 |
+
def __init__(self, vision_config, text_config):
|
841 |
+
super().__init__()
|
842 |
+
self.unimo = UnimoModel(vision_config, text_config)
|
843 |
+
self.cls = UnimoOnlyMLMHead(text_config)
|
844 |
+
self.config = text_config
|
845 |
+
|
846 |
+
self.tie_weights()
|
847 |
+
|
848 |
+
def forward(
|
849 |
+
self,
|
850 |
+
input_ids=None,
|
851 |
+
attention_mask=None,
|
852 |
+
token_type_ids=None,
|
853 |
+
position_ids=None,
|
854 |
+
head_mask=None,
|
855 |
+
sep_idx=None,
|
856 |
+
|
857 |
+
pixel_values=None,
|
858 |
+
output_attentions=None,
|
859 |
+
output_hidden_states=None,
|
860 |
+
return_dict=None,
|
861 |
+
labels=None,
|
862 |
+
):
|
863 |
+
outputs = self.unimo(
|
864 |
+
input_ids,
|
865 |
+
attention_mask=attention_mask,
|
866 |
+
token_type_ids=token_type_ids,
|
867 |
+
position_ids=position_ids,
|
868 |
+
head_mask=head_mask,
|
869 |
+
sep_idx=sep_idx,
|
870 |
+
pixel_values=pixel_values,
|
871 |
+
output_attentions=output_attentions,
|
872 |
+
output_hidden_states=output_hidden_states,
|
873 |
+
return_dict=return_dict,
|
874 |
+
)
|
875 |
+
|
876 |
+
sequence_output = outputs[0]
|
877 |
+
prediction_scores, trans_hidden_states = self.cls(sequence_output)
|
878 |
+
|
879 |
+
masked_lm_loss = None
|
880 |
+
if labels is not None:
|
881 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
882 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
883 |
+
|
884 |
+
if not return_dict:
|
885 |
+
output = (prediction_scores,) + outputs[2:]
|
886 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
887 |
+
|
888 |
+
return MaskedLMOutput(
|
889 |
+
loss=masked_lm_loss,
|
890 |
+
logits=prediction_scores,
|
891 |
+
hidden_states=outputs.hidden_states,
|
892 |
+
attentions=outputs.attentions,
|
893 |
+
), trans_hidden_states
|
894 |
+
|
895 |
+
def get_input_embeddings(self):
|
896 |
+
return self.unimo.text_embeddings.word_embeddings
|
897 |
+
|
898 |
+
def get_output_embeddings(self):
|
899 |
+
return self.cls.predictions.decoder
|
900 |
+
|
901 |
+
def set_output_embeddings(self, new_embeddings):
|
902 |
+
self.cls.predictions.decoder = new_embeddings
|
903 |
+
|
904 |
+
def tie_weights(self):
|
905 |
+
output_embeddings = self.get_output_embeddings()
|
906 |
+
self._tie_or_clone_weights(output_embeddings, self.unimo.get_input_embeddings())
|
907 |
+
|
908 |
+
def _tie_or_clone_weights(self, output_embeddings, input_embeddings):
|
909 |
+
"""Tie or clone module weights depending of whether we are using TorchScript or not"""
|
910 |
+
if self.config.torchscript:
|
911 |
+
output_embeddings.weight = nn.Parameter(input_embeddings.weight.clone())
|
912 |
+
else:
|
913 |
+
output_embeddings.weight = input_embeddings.weight
|
914 |
+
|
915 |
+
if getattr(output_embeddings, "bias", None) is not None:
|
916 |
+
output_embeddings.bias.data = nn.functional.pad(
|
917 |
+
output_embeddings.bias.data,
|
918 |
+
(
|
919 |
+
0,
|
920 |
+
output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0],
|
921 |
+
),
|
922 |
+
"constant",
|
923 |
+
0,
|
924 |
+
)
|
925 |
+
if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"):
|
926 |
+
output_embeddings.out_features = input_embeddings.num_embeddings
|
927 |
+
|
928 |
+
def resize_token_embeddings(self, new_num_tokens):
|
929 |
+
self.unimo.resize_token_embeddings(new_num_tokens)
|
930 |
+
self.tie_weights()
|
931 |
+
|
932 |
+
class UnimoOnlyMLMHead(nn.Module):
|
933 |
+
def __init__(self, config):
|
934 |
+
super().__init__()
|
935 |
+
self.predictions = UnimoLMPredictionHead(config)
|
936 |
+
|
937 |
+
def forward(self, sequence_output):
|
938 |
+
prediction_scores, trans_hidden_states = self.predictions(sequence_output)
|
939 |
+
return prediction_scores, trans_hidden_states
|
940 |
+
|
941 |
+
|
942 |
+
class UnimoLMPredictionHead(nn.Module):
|
943 |
+
def __init__(self, config):
|
944 |
+
super().__init__()
|
945 |
+
self.transform = BertPredictionHeadTransform(config)
|
946 |
+
|
947 |
+
# The output weights are the same as the input embeddings, but there is
|
948 |
+
# an output-only bias for each token.
|
949 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
950 |
+
|
951 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
952 |
+
|
953 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
954 |
+
self.decoder.bias = self.bias
|
955 |
+
|
956 |
+
def forward(self, hidden_states):
|
957 |
+
trans_hidden_states = self.transform(hidden_states)
|
958 |
+
hidden_states = self.decoder(trans_hidden_states)
|
959 |
+
return hidden_states, trans_hidden_states
|
960 |
+
|
961 |
+
|
962 |
+
class BertPredictionHeadTransform(nn.Module):
|
963 |
+
def __init__(self, config):
|
964 |
+
super().__init__()
|
965 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
966 |
+
if isinstance(config.hidden_act, str):
|
967 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
968 |
+
else:
|
969 |
+
self.transform_act_fn = config.hidden_act
|
970 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
971 |
+
|
972 |
+
def forward(self, hidden_states):
|
973 |
+
hidden_states = self.dense(hidden_states)
|
974 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
975 |
+
hidden_states = self.LayerNorm(hidden_states)
|
976 |
+
return hidden_states
|