language: en
thumbnail: null
tags:
- ASR
- CTC
- Attention
- Transformer
- pytorch
license: apache-2.0
datasets:
- librispeech
metrics:
- wer
- cer
CRDNN with CTC/Attention and RNNLM trained on LibriSpeech
This repository provides all the necessary tools to perform automatic speech recognition from an end-to-end system pretrained on LibriSpeech (EN) within SpeechBrain. For a better experience, we encourage you to learn more about SpeechBrain. The given ASR model performance are:
Release | Test clean WER | Test other WER | GPUs |
---|---|---|---|
05-03-21 | 2.55 | 5.99 | 2xV100 32GB |
Pipeline description
This ASR system is composed of 3 different but linked blocks:
- Tokenizer (unigram) that transforms words into subword units and trained with the train transcriptions of LibriSpeech.
- Neural language model (Transformer LM) trained on the full 10M words dataset.
- Acoustic model made of a transformer encoder and a joint decoder with CTC + transformer. Hence, the decoding also incorporates the CTC probabilities.
Intended uses & limitations
This model has been primarily developed to be run within SpeechBrain as a pretrained ASR model for the English language. Thanks to the flexibility of SpeechBrain, any of the 3 blocks detailed above can be extracted and connected to your custom pipeline as long as SpeechBrain is installed.
Install SpeechBrain
First of all, please install SpeechBrain with the following command:
pip install speechbrain
Please notice that we encourage you to read our tutorials and learn more about SpeechBrain.
Transcribing your own audio files (in English)
from speechbrain.pretrained import TransformerASR
asr_model = TransformerASR.from_hparams(source="speechbrain/asr-transformer-transformerlm-librispeech", savedir="pretrained_models/asr-transformer-transformerlm-librispeech")
asr_model.transcribe_file("speechbrain/asr-transformer-transformerlm-librispeech/example.wav")
Referencing SpeechBrain
@misc{SB2021,
author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua },
title = {SpeechBrain},
year = {2021},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/speechbrain/speechbrain}},
}