All-mms1ball-Dec1

This model is a fine-tuned version of facebook/mms-1b-all on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2261
  • Wer: 0.5776

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 3
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
75.7763 0.0050 100 4.0652 1.0
2.6846 0.0101 200 2.1046 0.8644
2.0892 0.0151 300 2.0278 0.7559
2.0608 0.0202 400 1.9999 0.7563
2.2366 0.0252 500 1.8535 0.7402
1.9112 0.0302 600 1.9858 0.7770
1.9297 0.0353 700 1.8104 0.7605
1.8322 0.0403 800 1.7293 0.7351
1.9999 0.0454 900 1.8046 0.7471
1.7927 0.0504 1000 1.6266 0.7112
1.758 0.0554 1100 1.5815 0.7251
1.802 0.0605 1200 1.7270 0.7197
1.8543 0.0655 1300 1.6053 0.7029
1.8065 0.0706 1400 1.5376 0.6837
1.7766 0.0756 1500 1.5990 0.7104
1.7397 0.0806 1600 1.5854 0.7021
1.6967 0.0857 1700 1.5414 0.7214
1.6538 0.0907 1800 1.6067 0.7237
1.7187 0.0958 1900 1.5579 0.7087
1.8067 0.1008 2000 1.7592 0.6927
1.6497 0.1058 2100 1.6402 0.7268
1.8631 0.1109 2200 1.4714 0.6692
1.6328 0.1159 2300 1.5083 0.6820
1.7545 0.1210 2400 1.5050 0.7249
1.6864 0.1260 2500 1.4886 0.7038
1.7195 0.1310 2600 1.5079 0.6585
1.6702 0.1361 2700 1.4524 0.6896
1.6112 0.1411 2800 1.5310 0.6637
1.7391 0.1462 2900 1.7407 0.7562
1.8044 0.1512 3000 1.5270 0.6762
1.6354 0.1562 3100 1.4674 0.6870
1.6693 0.1613 3200 1.4190 0.6663
1.601 0.1663 3300 1.4157 0.6634
1.4786 0.1714 3400 1.5873 0.6997
1.6173 0.1764 3500 1.4899 0.6713
1.6289 0.1815 3600 1.5515 0.6878
1.5271 0.1865 3700 1.5557 0.6821
1.5864 0.1915 3800 1.5196 0.6830
1.6389 0.1966 3900 1.6335 0.6787
1.737 0.2016 4000 1.4266 0.6589
1.4226 0.2067 4100 1.5183 0.6574
1.7838 0.2117 4200 1.5056 0.6927
1.7542 0.2167 4300 1.5173 0.6726
1.4174 0.2218 4400 1.5330 0.6743
1.7392 0.2268 4500 1.4587 0.6589
1.6215 0.2319 4600 1.4066 0.6607
1.5882 0.2369 4700 1.4013 0.6430
1.5614 0.2419 4800 1.4256 0.6366
1.6021 0.2470 4900 1.5503 0.6450
1.6551 0.2520 5000 1.5671 0.6685
1.6113 0.2571 5100 1.4772 0.6682
1.6276 0.2621 5200 1.4259 0.6838
1.4248 0.2671 5300 1.4761 0.6097
1.6195 0.2722 5400 1.3756 0.6340
1.4586 0.2772 5500 1.4569 0.6381
1.5018 0.2823 5600 1.3874 0.6060
1.5791 0.2873 5700 1.3675 0.6143
1.478 0.2923 5800 1.3716 0.6160
1.3886 0.2974 5900 1.3523 0.6084
1.4822 0.3024 6000 1.4189 0.6206
1.3936 0.3075 6100 1.5999 0.6650
1.7154 0.3125 6200 1.4897 0.6438
1.4976 0.3175 6300 1.3664 0.5995
1.5092 0.3226 6400 1.4601 0.6162
1.4872 0.3276 6500 1.3488 0.6119
1.6109 0.3327 6600 1.3319 0.6050
1.529 0.3377 6700 1.3900 0.6207
1.4621 0.3427 6800 1.5310 0.6547
1.5824 0.3478 6900 1.5412 0.6198
1.5586 0.3528 7000 1.3602 0.6082
1.4643 0.3579 7100 1.2699 0.5903
1.4514 0.3629 7200 1.3596 0.6034
1.3783 0.3679 7300 1.5230 0.6452
1.4566 0.3730 7400 1.3042 0.5975
1.6092 0.3780 7500 1.4030 0.6238
1.378 0.3831 7600 1.3766 0.5873
1.3222 0.3881 7700 1.4285 0.6241
1.6084 0.3931 7800 1.2604 0.6030
1.3567 0.3982 7900 1.3863 0.5975
1.3939 0.4032 8000 1.2574 0.5806
1.4154 0.4083 8100 1.2763 0.5825
1.5155 0.4133 8200 1.2933 0.6195
1.4151 0.4183 8300 1.2543 0.5926
1.4554 0.4234 8400 1.3933 0.6348
1.4414 0.4284 8500 1.3746 0.6122
1.6169 0.4335 8600 1.4666 0.5990
1.4456 0.4385 8700 1.2792 0.6025
1.5 0.4435 8800 1.2372 0.6242
1.3626 0.4486 8900 1.2482 0.5949
1.4589 0.4536 9000 1.3655 0.5937
1.4927 0.4587 9100 1.2873 0.5987
1.4479 0.4637 9200 1.3235 0.5998
1.3844 0.4688 9300 1.2443 0.6015
1.4684 0.4738 9400 1.2813 0.5946
1.3035 0.4788 9500 1.4207 0.6015
1.5696 0.4839 9600 1.2985 0.6050
1.3457 0.4889 9700 1.2844 0.5656
1.4152 0.4940 9800 1.2718 0.6010
1.5372 0.4990 9900 1.4137 0.5873
1.3527 0.5040 10000 1.3788 0.5740
1.3174 0.5091 10100 1.3241 0.5668
1.4634 0.5141 10200 1.3513 0.6071
1.3983 0.5192 10300 1.2526 0.5718
1.4222 0.5242 10400 1.2591 0.5957
1.4156 0.5292 10500 1.2508 0.6071
1.4235 0.5343 10600 1.2258 0.5842
1.5522 0.5393 10700 1.2606 0.6380
1.5539 0.5444 10800 1.3713 0.6309
1.2924 0.5494 10900 1.2261 0.5776

Framework versions

  • Transformers 4.43.4
  • Pytorch 2.4.1
  • Datasets 3.0.0
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
965M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for sqrk/All-mms1ball-Dec1

Finetuned
(239)
this model