SentenceTransformer based on intfloat/multilingual-e5-small
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("srikarvar/fine_tuned_model_2")
# Run inference
sentences = [
'How do you make a paper boat?',
'How do you make a paper airplane?',
'What are the benefits of using solar energy?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
pair-class-dev
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9478 |
cosine_accuracy_threshold | 0.6633 |
cosine_f1 | 0.9559 |
cosine_f1_threshold | 0.6633 |
cosine_precision | 0.9155 |
cosine_recall | 1.0 |
cosine_ap | 0.9777 |
dot_accuracy | 0.9478 |
dot_accuracy_threshold | 0.6633 |
dot_f1 | 0.9559 |
dot_f1_threshold | 0.6633 |
dot_precision | 0.9155 |
dot_recall | 1.0 |
dot_ap | 0.9777 |
manhattan_accuracy | 0.9391 |
manhattan_accuracy_threshold | 9.6031 |
manhattan_f1 | 0.9489 |
manhattan_f1_threshold | 12.6607 |
manhattan_precision | 0.9028 |
manhattan_recall | 1.0 |
manhattan_ap | 0.9756 |
euclidean_accuracy | 0.9478 |
euclidean_accuracy_threshold | 0.8205 |
euclidean_f1 | 0.9559 |
euclidean_f1_threshold | 0.8205 |
euclidean_precision | 0.9155 |
euclidean_recall | 1.0 |
euclidean_ap | 0.9777 |
max_accuracy | 0.9478 |
max_accuracy_threshold | 9.6031 |
max_f1 | 0.9559 |
max_f1_threshold | 12.6607 |
max_precision | 0.9155 |
max_recall | 1.0 |
max_ap | 0.9777 |
Binary Classification
- Dataset:
pair-class-test
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9478 |
cosine_accuracy_threshold | 0.7873 |
cosine_f1 | 0.9559 |
cosine_f1_threshold | 0.6543 |
cosine_precision | 0.9155 |
cosine_recall | 1.0 |
cosine_ap | 0.9777 |
dot_accuracy | 0.9478 |
dot_accuracy_threshold | 0.7873 |
dot_f1 | 0.9559 |
dot_f1_threshold | 0.6543 |
dot_precision | 0.9155 |
dot_recall | 1.0 |
dot_ap | 0.9777 |
manhattan_accuracy | 0.9478 |
manhattan_accuracy_threshold | 11.1232 |
manhattan_f1 | 0.9559 |
manhattan_f1_threshold | 12.8623 |
manhattan_precision | 0.9155 |
manhattan_recall | 1.0 |
manhattan_ap | 0.9774 |
euclidean_accuracy | 0.9478 |
euclidean_accuracy_threshold | 0.6522 |
euclidean_f1 | 0.9559 |
euclidean_f1_threshold | 0.8315 |
euclidean_precision | 0.9155 |
euclidean_recall | 1.0 |
euclidean_ap | 0.9777 |
max_accuracy | 0.9478 |
max_accuracy_threshold | 11.1232 |
max_f1 | 0.9559 |
max_f1_threshold | 12.8623 |
max_precision | 0.9155 |
max_recall | 1.0 |
max_ap | 0.9777 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,030 training samples
- Columns:
label
,sentence2
, andsentence1
- Approximate statistics based on the first 1000 samples:
label sentence2 sentence1 type int string string details - 0: ~49.60%
- 1: ~50.40%
- min: 4 tokens
- mean: 10.27 tokens
- max: 22 tokens
- min: 6 tokens
- mean: 10.9 tokens
- max: 22 tokens
- Samples:
label sentence2 sentence1 1
Speed of sound in air
What is the speed of sound?
1
World's most popular tourist destination
What is the most visited tourist attraction in the world?
1
How do I write a resume?
How do I create a resume?
- Loss:
ContrastiveLoss
with these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.6, "size_average": true }
Evaluation Dataset
Unnamed Dataset
- Size: 115 evaluation samples
- Columns:
label
,sentence2
, andsentence1
- Approximate statistics based on the first 1000 samples:
label sentence2 sentence1 type int string string details - 0: ~43.48%
- 1: ~56.52%
- min: 5 tokens
- mean: 10.04 tokens
- max: 15 tokens
- min: 6 tokens
- mean: 10.81 tokens
- max: 20 tokens
- Samples:
label sentence2 sentence1 0
What methods are used to measure a nation's GDP?
How is the GDP of a country measured?
0
What is the currency of Japan?
What is the currency of China?
1
Steps to cultivate tomatoes at home
How to grow tomatoes in a garden?
- Loss:
ContrastiveLoss
with these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.6, "size_average": true }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 32gradient_accumulation_steps
: 2weight_decay
: 0.01num_train_epochs
: 8lr_scheduler_type
: reduce_lr_on_plateauwarmup_ratio
: 0.1load_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 2eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 8max_steps
: -1lr_scheduler_type
: reduce_lr_on_plateaulr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | pair-class-dev_max_ap | pair-class-test_max_ap |
---|---|---|---|---|---|
0 | 0 | - | - | 0.7625 | - |
0.6061 | 10 | 0.0417 | - | - | - |
0.9697 | 16 | - | 0.0119 | 0.9695 | - |
1.2121 | 20 | 0.0189 | - | - | - |
1.8182 | 30 | 0.0148 | - | - | - |
2.0 | 33 | - | 0.0102 | 0.9741 | - |
2.4242 | 40 | 0.0114 | - | - | - |
2.9697 | 49 | - | 0.0098 | 0.9752 | - |
3.0303 | 50 | 0.009 | - | - | - |
3.6364 | 60 | 0.008 | - | - | - |
4.0 | 66 | - | 0.0095 | 0.9778 | - |
4.2424 | 70 | 0.0065 | - | - | - |
4.8485 | 80 | 0.0056 | - | - | - |
4.9697 | 82 | - | 0.0092 | 0.9749 | - |
5.4545 | 90 | 0.0056 | - | - | - |
6.0 | 99 | - | 0.0088 | 0.9766 | - |
6.0606 | 100 | 0.0045 | - | - | - |
6.6667 | 110 | 0.0044 | - | - | - |
6.9697 | 115 | - | 0.0087 | 0.9777 | - |
7.2727 | 120 | 0.0038 | - | - | - |
7.7576 | 128 | - | 0.0090 | 0.9777 | 0.9777 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.32.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
ContrastiveLoss
@inproceedings{hadsell2006dimensionality,
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
title={Dimensionality Reduction by Learning an Invariant Mapping},
year={2006},
volume={2},
number={},
pages={1735-1742},
doi={10.1109/CVPR.2006.100}
}
- Downloads last month
- 1
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for srikarvar/fine_tuned_model_2
Base model
intfloat/multilingual-e5-smallEvaluation results
- Cosine Accuracy on pair class devself-reported0.948
- Cosine Accuracy Threshold on pair class devself-reported0.663
- Cosine F1 on pair class devself-reported0.956
- Cosine F1 Threshold on pair class devself-reported0.663
- Cosine Precision on pair class devself-reported0.915
- Cosine Recall on pair class devself-reported1.000
- Cosine Ap on pair class devself-reported0.978
- Dot Accuracy on pair class devself-reported0.948
- Dot Accuracy Threshold on pair class devself-reported0.663
- Dot F1 on pair class devself-reported0.956