metadata
base_model: intfloat/multilingual-e5-small
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2476
- loss:OnlineContrastiveLoss
widget:
- source_sentence: Would you want to be President?
sentences:
- Can you help me with my homework?
- How to bake cookies?
- Why do you want to be to president?
- source_sentence: Velocity of sound waves in the atmosphere
sentences:
- What is the speed of sound in air?
- What is the best/most memorable thing you've ever eaten and why?
- >-
The `safe` option in the `to_spreadsheet` method controls whether a safe
conversion or not is needed for certain plant attributes to store the
data in a SpreadsheetTable or Row.
- source_sentence: Number of countries in the European Union
sentences:
- How many countries are in the European Union?
- Who painted the Sistine Chapel ceiling?
- >-
The RecipeManager class is used to manage the downloading and extraction
of recipes.
- source_sentence: Official currency of the USA
sentences:
- What is purpose of life?
- >-
Files inside ZIP archives are accessed and yielded sequentially using
iter_zip().
- What is the currency of the United States?
- source_sentence: Who wrote the book "1984"?
sentences:
- What is the speed of light?
- How to set up a home gym?
- Who wrote the book "To Kill a Mockingbird"?
model-index:
- name: SentenceTransformer based on intfloat/multilingual-e5-small
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class dev
type: pair-class-dev
metrics:
- type: cosine_accuracy
value: 0.8623188405797102
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.8491722345352173
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.8856304985337243
name: Cosine F1
- type: cosine_f1_threshold
value: 0.8245140314102173
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.8435754189944135
name: Cosine Precision
- type: cosine_recall
value: 0.9320987654320988
name: Cosine Recall
- type: cosine_ap
value: 0.9266759550807792
name: Cosine Ap
- type: dot_accuracy
value: 0.8623188405797102
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.8491722941398621
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.8856304985337243
name: Dot F1
- type: dot_f1_threshold
value: 0.8245140910148621
name: Dot F1 Threshold
- type: dot_precision
value: 0.8435754189944135
name: Dot Precision
- type: dot_recall
value: 0.9320987654320988
name: Dot Recall
- type: dot_ap
value: 0.9266759550807792
name: Dot Ap
- type: manhattan_accuracy
value: 0.8623188405797102
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 8.599637031555176
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.8856304985337243
name: Manhattan F1
- type: manhattan_f1_threshold
value: 9.221129417419434
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.8435754189944135
name: Manhattan Precision
- type: manhattan_recall
value: 0.9320987654320988
name: Manhattan Recall
- type: manhattan_ap
value: 0.9260061788962293
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.8623188405797102
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.5491920709609985
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.8856304985337243
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.5924187898635864
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.8435754189944135
name: Euclidean Precision
- type: euclidean_recall
value: 0.9320987654320988
name: Euclidean Recall
- type: euclidean_ap
value: 0.9266759550807792
name: Euclidean Ap
- type: max_accuracy
value: 0.8623188405797102
name: Max Accuracy
- type: max_accuracy_threshold
value: 8.599637031555176
name: Max Accuracy Threshold
- type: max_f1
value: 0.8856304985337243
name: Max F1
- type: max_f1_threshold
value: 9.221129417419434
name: Max F1 Threshold
- type: max_precision
value: 0.8435754189944135
name: Max Precision
- type: max_recall
value: 0.9320987654320988
name: Max Recall
- type: max_ap
value: 0.9266759550807792
name: Max Ap
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class test
type: pair-class-test
metrics:
- type: cosine_accuracy
value: 0.8659420289855072
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.8320531249046326
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.8875379939209727
name: Cosine F1
- type: cosine_f1_threshold
value: 0.8320531249046326
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.874251497005988
name: Cosine Precision
- type: cosine_recall
value: 0.9012345679012346
name: Cosine Recall
- type: cosine_ap
value: 0.9257692996006023
name: Cosine Ap
- type: dot_accuracy
value: 0.8659420289855072
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.8320530652999878
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.8875379939209727
name: Dot F1
- type: dot_f1_threshold
value: 0.8320530652999878
name: Dot F1 Threshold
- type: dot_precision
value: 0.874251497005988
name: Dot Precision
- type: dot_recall
value: 0.9012345679012346
name: Dot Recall
- type: dot_ap
value: 0.9257692996006023
name: Dot Ap
- type: manhattan_accuracy
value: 0.8623188405797102
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 8.854782104492188
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.8875739644970415
name: Manhattan F1
- type: manhattan_f1_threshold
value: 9.349273681640625
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.8522727272727273
name: Manhattan Precision
- type: manhattan_recall
value: 0.9259259259259259
name: Manhattan Recall
- type: manhattan_ap
value: 0.9255387736459155
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.8659420289855072
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.5795620679855347
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.8875379939209727
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.5795620679855347
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.874251497005988
name: Euclidean Precision
- type: euclidean_recall
value: 0.9012345679012346
name: Euclidean Recall
- type: euclidean_ap
value: 0.9257692996006023
name: Euclidean Ap
- type: max_accuracy
value: 0.8659420289855072
name: Max Accuracy
- type: max_accuracy_threshold
value: 8.854782104492188
name: Max Accuracy Threshold
- type: max_f1
value: 0.8875739644970415
name: Max F1
- type: max_f1_threshold
value: 9.349273681640625
name: Max F1 Threshold
- type: max_precision
value: 0.874251497005988
name: Max Precision
- type: max_recall
value: 0.9259259259259259
name: Max Recall
- type: max_ap
value: 0.9257692996006023
name: Max Ap
SentenceTransformer based on intfloat/multilingual-e5-small
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("srikarvar/fine_tuned_model_9")
# Run inference
sentences = [
'Who wrote the book "1984"?',
'Who wrote the book "To Kill a Mockingbird"?',
'What is the speed of light?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
pair-class-dev
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.8623 |
cosine_accuracy_threshold | 0.8492 |
cosine_f1 | 0.8856 |
cosine_f1_threshold | 0.8245 |
cosine_precision | 0.8436 |
cosine_recall | 0.9321 |
cosine_ap | 0.9267 |
dot_accuracy | 0.8623 |
dot_accuracy_threshold | 0.8492 |
dot_f1 | 0.8856 |
dot_f1_threshold | 0.8245 |
dot_precision | 0.8436 |
dot_recall | 0.9321 |
dot_ap | 0.9267 |
manhattan_accuracy | 0.8623 |
manhattan_accuracy_threshold | 8.5996 |
manhattan_f1 | 0.8856 |
manhattan_f1_threshold | 9.2211 |
manhattan_precision | 0.8436 |
manhattan_recall | 0.9321 |
manhattan_ap | 0.926 |
euclidean_accuracy | 0.8623 |
euclidean_accuracy_threshold | 0.5492 |
euclidean_f1 | 0.8856 |
euclidean_f1_threshold | 0.5924 |
euclidean_precision | 0.8436 |
euclidean_recall | 0.9321 |
euclidean_ap | 0.9267 |
max_accuracy | 0.8623 |
max_accuracy_threshold | 8.5996 |
max_f1 | 0.8856 |
max_f1_threshold | 9.2211 |
max_precision | 0.8436 |
max_recall | 0.9321 |
max_ap | 0.9267 |
Binary Classification
- Dataset:
pair-class-test
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.8659 |
cosine_accuracy_threshold | 0.8321 |
cosine_f1 | 0.8875 |
cosine_f1_threshold | 0.8321 |
cosine_precision | 0.8743 |
cosine_recall | 0.9012 |
cosine_ap | 0.9258 |
dot_accuracy | 0.8659 |
dot_accuracy_threshold | 0.8321 |
dot_f1 | 0.8875 |
dot_f1_threshold | 0.8321 |
dot_precision | 0.8743 |
dot_recall | 0.9012 |
dot_ap | 0.9258 |
manhattan_accuracy | 0.8623 |
manhattan_accuracy_threshold | 8.8548 |
manhattan_f1 | 0.8876 |
manhattan_f1_threshold | 9.3493 |
manhattan_precision | 0.8523 |
manhattan_recall | 0.9259 |
manhattan_ap | 0.9255 |
euclidean_accuracy | 0.8659 |
euclidean_accuracy_threshold | 0.5796 |
euclidean_f1 | 0.8875 |
euclidean_f1_threshold | 0.5796 |
euclidean_precision | 0.8743 |
euclidean_recall | 0.9012 |
euclidean_ap | 0.9258 |
max_accuracy | 0.8659 |
max_accuracy_threshold | 8.8548 |
max_f1 | 0.8876 |
max_f1_threshold | 9.3493 |
max_precision | 0.8743 |
max_recall | 0.9259 |
max_ap | 0.9258 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 2,476 training samples
- Columns:
sentence2
,label
, andsentence1
- Approximate statistics based on the first 1000 samples:
sentence2 label sentence1 type string int string details - min: 4 tokens
- mean: 16.06 tokens
- max: 98 tokens
- 0: ~40.20%
- 1: ~59.80%
- min: 6 tokens
- mean: 16.35 tokens
- max: 98 tokens
- Samples:
sentence2 label sentence1 A model is trained using the ImageNet dataset to classify images into distinct categories.
1
The ImageNet dataset is used for training models to classify images into various categories.
Version 5.3.1 does not contain it.
1
No, it doesn't exist in version 5.3.1.
Can you do my homework for me?
0
Can you help me with my homework?
- Loss:
OnlineContrastiveLoss
Evaluation Dataset
Unnamed Dataset
- Size: 276 evaluation samples
- Columns:
sentence2
,label
, andsentence1
- Approximate statistics based on the first 276 samples:
sentence2 label sentence1 type string int string details - min: 5 tokens
- mean: 15.34 tokens
- max: 86 tokens
- 0: ~41.30%
- 1: ~58.70%
- min: 6 tokens
- mean: 15.56 tokens
- max: 87 tokens
- Samples:
sentence2 label sentence1 How is AI used to enhance cybersecurity?
0
What are the challenges of AI in cybersecurity?
The SYSTEM log documentation can be accessed by clicking on the link which will take you to the main version.
1
You can find the SYSTEM log documentation on the main version. Click on the provided link to redirect to the main version of the documentation.
Name the capital city of Italy
1
What is the capital of Italy?
- Loss:
OnlineContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 32gradient_accumulation_steps
: 2num_train_epochs
: 4warmup_ratio
: 0.1load_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 2eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | pair-class-dev_max_ap | pair-class-test_max_ap |
---|---|---|---|---|---|
0 | 0 | - | - | 0.7876 | - |
0.2564 | 10 | 1.6257 | - | - | - |
0.5128 | 20 | 0.8138 | - | - | - |
0.7692 | 30 | 0.7276 | - | - | - |
1.0 | 39 | - | 0.8190 | 0.9089 | - |
1.0256 | 40 | 0.6423 | - | - | - |
1.2821 | 50 | 0.5168 | - | - | - |
1.5385 | 60 | 0.3583 | - | - | - |
1.7949 | 70 | 0.3182 | - | - | - |
2.0 | 78 | - | 0.7351 | 0.9215 | - |
2.0513 | 80 | 0.3521 | - | - | - |
2.3077 | 90 | 0.2037 | - | - | - |
2.5641 | 100 | 0.1293 | - | - | - |
2.8205 | 110 | 0.1374 | - | - | - |
3.0 | 117 | - | 0.7223 | 0.9258 | - |
3.0769 | 120 | 0.198 | - | - | - |
3.3333 | 130 | 0.0667 | - | - | - |
3.5897 | 140 | 0.0526 | - | - | - |
3.8462 | 150 | 0.0652 | - | - | - |
4.0 | 156 | - | 0.7327 | 0.9267 | 0.9258 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.0
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.34.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}