Edit model card

SentenceTransformer based on intfloat/multilingual-e5-small

This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: intfloat/multilingual-e5-small
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 384 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("srikarvar/multilingual-e5-small-pairclass-contrastive")
# Run inference
sentences = [
    'Language spoken by the most people',
    'What is the most spoken language in the world?',
    'Who was the first person to walk on the moon?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Binary Classification

Metric Value
cosine_accuracy 0.9459
cosine_accuracy_threshold 0.8864
cosine_f1 0.9512
cosine_f1_threshold 0.8167
cosine_precision 0.907
cosine_recall 1.0
cosine_ap 0.9897
dot_accuracy 0.9459
dot_accuracy_threshold 0.8864
dot_f1 0.9512
dot_f1_threshold 0.8167
dot_precision 0.907
dot_recall 1.0
dot_ap 0.9897
manhattan_accuracy 0.9459
manhattan_accuracy_threshold 7.3039
manhattan_f1 0.9512
manhattan_f1_threshold 9.5429
manhattan_precision 0.907
manhattan_recall 1.0
manhattan_ap 0.9897
euclidean_accuracy 0.9459
euclidean_accuracy_threshold 0.4765
euclidean_f1 0.9512
euclidean_f1_threshold 0.6044
euclidean_precision 0.907
euclidean_recall 1.0
euclidean_ap 0.9897
max_accuracy 0.9459
max_accuracy_threshold 7.3039
max_f1 0.9512
max_f1_threshold 9.5429
max_precision 0.907
max_recall 1.0
max_ap 0.9897

Binary Classification

Metric Value
cosine_accuracy 0.9459
cosine_accuracy_threshold 0.8864
cosine_f1 0.9512
cosine_f1_threshold 0.8167
cosine_precision 0.907
cosine_recall 1.0
cosine_ap 0.9897
dot_accuracy 0.9459
dot_accuracy_threshold 0.8864
dot_f1 0.9512
dot_f1_threshold 0.8167
dot_precision 0.907
dot_recall 1.0
dot_ap 0.9897
manhattan_accuracy 0.9459
manhattan_accuracy_threshold 7.3039
manhattan_f1 0.9512
manhattan_f1_threshold 9.5429
manhattan_precision 0.907
manhattan_recall 1.0
manhattan_ap 0.9897
euclidean_accuracy 0.9459
euclidean_accuracy_threshold 0.4765
euclidean_f1 0.9512
euclidean_f1_threshold 0.6044
euclidean_precision 0.907
euclidean_recall 1.0
euclidean_ap 0.9897
max_accuracy 0.9459
max_accuracy_threshold 7.3039
max_f1 0.9512
max_f1_threshold 9.5429
max_precision 0.907
max_recall 1.0
max_ap 0.9897

Training Details

Training Dataset

Unnamed Dataset

  • Size: 296 training samples
  • Columns: label, sentence2, and sentence1
  • Approximate statistics based on the first 1000 samples:
    label sentence2 sentence1
    type int string string
    details
    • 0: ~50.68%
    • 1: ~49.32%
    • min: 4 tokens
    • mean: 9.39 tokens
    • max: 20 tokens
    • min: 6 tokens
    • mean: 10.24 tokens
    • max: 20 tokens
  • Samples:
    label sentence2 sentence1
    0 How to improve running speed? How to train for a marathon?
    0 What is the distance of a marathon? How to train for a marathon?
    1 Mona Lisa painter Who painted the Mona Lisa?
  • Loss: ContrastiveLoss with these parameters:
    {
        "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
        "margin": 0.5,
        "size_average": true
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 74 evaluation samples
  • Columns: label, sentence2, and sentence1
  • Approximate statistics based on the first 1000 samples:
    label sentence2 sentence1
    type int string string
    details
    • 0: ~47.30%
    • 1: ~52.70%
    • min: 5 tokens
    • mean: 9.18 tokens
    • max: 22 tokens
    • min: 7 tokens
    • mean: 10.15 tokens
    • max: 20 tokens
  • Samples:
    label sentence2 sentence1
    1 Bitcoin's current value What is the price of Bitcoin?
    1 Who found out about gravity? Who discovered gravity?
    1 Language spoken by the most people What is the most spoken language in the world?
  • Loss: ContrastiveLoss with these parameters:
    {
        "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
        "margin": 0.5,
        "size_average": true
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 2
  • learning_rate: 3e-05
  • weight_decay: 0.01
  • num_train_epochs: 5
  • lr_scheduler_type: reduce_lr_on_plateau
  • warmup_ratio: 0.1
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 2
  • eval_accumulation_steps: None
  • learning_rate: 3e-05
  • weight_decay: 0.01
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: reduce_lr_on_plateau
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss pair-class-dev_max_ap pair-class-test_max_ap
0 0 - - 0.6933 -
0.9474 9 - 0.0182 0.9142 -
1.0526 10 0.0311 - - -
2.0 19 - 0.0091 0.9730 -
2.1053 20 0.0119 - - -
2.9474 28 - 0.0090 0.9878 -
3.1579 30 0.0074 - - -
4.0 38 - 0.0084 0.9891 -
4.2105 40 0.005 - - -
4.7368 45 - 0.0084 0.9897 0.9897
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.32.1
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

ContrastiveLoss

@inproceedings{hadsell2006dimensionality,
    author={Hadsell, R. and Chopra, S. and LeCun, Y.},
    booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)}, 
    title={Dimensionality Reduction by Learning an Invariant Mapping}, 
    year={2006},
    volume={2},
    number={},
    pages={1735-1742},
    doi={10.1109/CVPR.2006.100}
}
Downloads last month
0
Safetensors
Model size
118M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for srikarvar/multilingual-e5-small-pairclass-contrastive

Finetuned
(56)
this model
Finetunes
1 model

Evaluation results