|
--- |
|
license: apache-2.0 |
|
base_model: google/mt5-small |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
datasets: |
|
- xsum |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-small-finetuned-amazon-en-es |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: xsum |
|
type: xsum |
|
config: default |
|
split: validation |
|
args: default |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 0.0706 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-finetuned-amazon-en-es |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the xsum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 5.4800 |
|
- Rouge1: 0.0706 |
|
- Rouge2: 0.0067 |
|
- Rougel: 0.058 |
|
- Rougelsum: 0.0654 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| |
|
| No log | 1.0 | 13 | 7.7221 | 0.0369 | 0.0 | 0.0369 | 0.0366 | |
|
| No log | 2.0 | 26 | 7.1952 | 0.0448 | 0.0 | 0.0452 | 0.0449 | |
|
| No log | 3.0 | 39 | 6.5146 | 0.0442 | 0.0 | 0.0443 | 0.044 | |
|
| 12.6754 | 4.0 | 52 | 6.2530 | 0.0745 | 0.008 | 0.0636 | 0.0679 | |
|
| 12.6754 | 5.0 | 65 | 6.0200 | 0.0745 | 0.0069 | 0.0642 | 0.0693 | |
|
| 12.6754 | 6.0 | 78 | 5.7336 | 0.0706 | 0.0067 | 0.058 | 0.0654 | |
|
| 12.6754 | 7.0 | 91 | 5.5400 | 0.0706 | 0.0067 | 0.058 | 0.0654 | |
|
| 9.1744 | 8.0 | 104 | 5.4800 | 0.0706 | 0.0067 | 0.058 | 0.0654 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.2.1+cu118 |
|
- Datasets 2.17.1 |
|
- Tokenizers 0.15.2 |
|
|