Model Info (Interal):
- Size: 7B
- Dataset: The Pile v2
contaminated(P3) + lower_code(5%) + wiki(fixed) + books3(fixed & broken)
- Batch size (in tokens): 8M
- Checkpoint Step: 69,000 (552B tokens)
- Checkpoint path (AWS East):
/fsx/ckpts/7b_tok=neox_data=pilev2-recontam_lower-code_bs=8m_tp=4_pp=1_init=wang-small-init/global_step69000_hf
Notes:
- Trained for 36k steps with incorrectly tokenized Books3 dataset (GPT-2 tokenizer instead of NeoX tokenizer)
- tp=2 (not 4)
W&B Report: https://stability.wandb.io/stability-llm/stable-lm/reports/StableLM-7B-alpha---Vmlldzo2MjA
Usage:
import transformers
model = transformers.AutoModelForCausalLM.from_pretrained("CarperAI/7b-alpha")
tokenizer = transformers.AutoTokenizer.from_pretrained("CarperAI/7b-alpha")
tokenizer.pad_token = tokenizer.eos_token
tokenizer.paddding_side = "left"
prompts = [
"User1: The dog sat on a man's lap and barked 3 times.\nUser2: How many times did the dog bark?"
"Curious Person Question: A group of genetically identical individuals is called what?\nSmart Person Answer: a clone\n\nCurious Person Question: Who proposed the theory of evolution by natural selection?\nSmart Person Answer:"
]
batch_encoding = tokenizer(prompts, return_tensors="pt", padding=True)
print(f"Generating {len(prompts)} prompts...")
samples = model.generate(
**batch_encoding,
max_new_tokens=64,
temperature=0.0,
do_sample=False,
)
samples = tokenizer.batch_decode(samples, skip_special_tokens=True)
for prompt, sample in zip(prompts, samples):
print(f"Prompt: {prompt}\nSample: {sample}\n")