fine_tune_output

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 4.2902

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
5.061 7.2727 10 3.1055
3.6905 14.5455 20 2.6699
2.4714 21.8182 30 1.8229
0.9142 29.0909 40 1.8090
0.0188 36.3636 50 3.1047
0.0544 43.6364 60 3.8352
0.0316 50.9091 70 3.7350
0.0116 58.1818 80 3.7428
0.0005 65.4545 90 4.4955
0.0001 72.7273 100 4.2902

Framework versions

  • PEFT 0.10.0
  • Transformers 4.46.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for stlee9048/fine_tune_output

Adapter
(537)
this model