Edit model card

CNEC_2_0_ext_Czert-B-base-cased

This model is a fine-tuned version of UWB-AIR/Czert-B-base-cased on the cnec dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1904
  • Precision: 0.8444
  • Recall: 0.8804
  • F1: 0.8620
  • Accuracy: 0.9640

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.3858 0.56 500 0.1756 0.7393 0.7742 0.7564 0.9477
0.1885 1.12 1000 0.1782 0.7596 0.8278 0.7922 0.9509
0.1474 1.68 1500 0.1539 0.7979 0.8427 0.8197 0.9579
0.1262 2.24 2000 0.1717 0.7965 0.8486 0.8217 0.9581
0.1092 2.8 2500 0.1512 0.7994 0.8625 0.8298 0.9604
0.0901 3.36 3000 0.1558 0.8204 0.8680 0.8435 0.9622
0.0882 3.92 3500 0.1557 0.8187 0.8541 0.8360 0.9611
0.0718 4.48 4000 0.1730 0.8134 0.8566 0.8344 0.9605
0.0704 5.04 4500 0.1726 0.8225 0.8715 0.8463 0.9623
0.0594 5.6 5000 0.1707 0.8318 0.8715 0.8512 0.9636
0.0567 6.16 5500 0.1781 0.8377 0.8710 0.8540 0.9629
0.0492 6.72 6000 0.1782 0.8410 0.8769 0.8586 0.9641
0.0437 7.28 6500 0.1883 0.8365 0.8734 0.8546 0.9625
0.0449 7.84 7000 0.1818 0.8439 0.8774 0.8603 0.9640
0.0421 8.4 7500 0.1927 0.8343 0.8720 0.8527 0.9632
0.0357 8.96 8000 0.1848 0.8463 0.8824 0.8639 0.9647
0.034 9.52 8500 0.1904 0.8444 0.8804 0.8620 0.9640

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
8
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for stulcrad/CNEC_2_0_ext_Czert-B-base-cased

Finetuned
(7)
this model

Evaluation results