|
--- |
|
license: openrail |
|
--- |
|
|
|
Recommended version of `diffusers` is `0.20.2` or `0.24.0` with `torch` `2`. |
|
|
|
Usage Example: |
|
```python |
|
import copy |
|
import torch |
|
import requests |
|
from PIL import Image |
|
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler, ControlNetModel |
|
|
|
# Load the pipeline |
|
pipeline: DiffusionPipeline = DiffusionPipeline.from_pretrained( |
|
"sudo-ai/zero123plus-v1.2", custom_pipeline="sudo-ai/zero123plus-pipeline", |
|
torch_dtype=torch.float16 |
|
) |
|
normal_pipeline = copy.copy(pipeline) |
|
normal_pipeline.add_controlnet(ControlNetModel.from_pretrained( |
|
"sudo-ai/controlnet-zp12-normal-gen-v1", torch_dtype=torch.float16 |
|
), conditioning_scale=1.0) |
|
pipeline.to("cuda:0", torch.float16) |
|
normal_pipeline.to("cuda:0", torch.float16) |
|
# Run the pipeline |
|
cond = Image.open(requests.get("https://d.skis.ltd/nrp/sample-data/0_cond.png", stream=True).raw) |
|
genimg = pipeline( |
|
cond, |
|
prompt='', guidance_scale=4, num_inference_steps=75, width=640, height=960 |
|
).images[0] |
|
normalimg = normal_pipeline( |
|
cond, depth_image=genimg, |
|
prompt='', guidance_scale=1, num_inference_steps=50, width=640, height=960 |
|
).images[0] |
|
genimg.save("colors.png") |
|
normalimg.save("normals.png") |
|
``` |
|
|