Edit model card

phi-3-mini-LoRA

This model is a fine-tuned version of microsoft/Phi-3.5-mini-instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3840

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 3407
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 5
  • training_steps: 120

Training results

Training Loss Epoch Step Validation Loss
1.5071 0.5882 5 1.4674
1.1659 1.1765 10 1.0849
0.894 1.7647 15 0.8655
0.7243 2.3529 20 0.6989
0.5752 2.9412 25 0.5856
0.5724 3.5294 30 0.5257
0.4834 4.1176 35 0.4875
0.3861 4.7059 40 0.4588
0.35 5.2941 45 0.4368
0.3126 5.8824 50 0.4251
0.367 6.4706 55 0.4080
0.2792 7.0588 60 0.3955
0.3952 7.6471 65 0.3914
0.2854 8.2353 70 0.3784
0.3224 8.8235 75 0.3867
0.3187 9.4118 80 0.3765
0.1675 10.0 85 0.3799
0.1888 10.5882 90 0.3858
0.2021 11.1765 95 0.3759
0.1518 11.7647 100 0.3868
0.2075 12.3529 105 0.3915
0.1497 12.9412 110 0.3814
0.1797 13.5294 115 0.3821
0.1606 14.1176 120 0.3840

Framework versions

  • PEFT 0.13.2
  • Transformers 4.45.2
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
44
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for sujithatz/phi-3-mini-LoRA

Adapter
(102)
this model