vikhyatk-moondream1.1old / modeling_phi.py
sujitvasanth's picture
Duplicate from vikhyatk/moondream1
ac396ab verified
raw
history blame
25.3 kB
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
#
# Copyright (c) 2022, Tri Dao, [email protected].
# Licensed under the BSD 3-Clause License.
from dataclasses import dataclass, field
from typing import Any, Dict, Optional, Union, Tuple
import math
import torch
import torch.nn as nn
from einops import rearrange, repeat
from transformers import PretrainedConfig, PreTrainedModel
from transformers.activations import ACT2FN
from transformers.modeling_outputs import CausalLMOutputWithPast
from .configuration_moondream import PhiConfig
FusedDense = None
@dataclass
class InferenceParams:
max_seqlen: int
max_batch_size: int
seqlen_offset: int = 0
batch_size_offset: int = 0
key_value_memory_dict: Dict[str, Any] = field(default_factory=dict)
lengths_per_sample: torch.Tensor = None
class Embedding(nn.Module):
def __init__(self, config: PretrainedConfig):
super().__init__()
self.wte = nn.Embedding(config.vocab_size, config.n_embd)
self.drop = nn.Dropout(config.embd_pdrop)
def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor:
return self.drop(self.wte(input_ids.view(-1, input_ids.size(-1))))
def _apply_rotary_emb(x, cos, sin):
seqlen, rotary_dim = x.size(1), cos.size(1) * 2
x_rot, x_pass = x[..., :rotary_dim], x[..., rotary_dim:]
x1, x2 = x_rot.chunk(2, dim=-1)
c, s = cos[:seqlen].unsqueeze(1), sin[:seqlen].unsqueeze(1)
x_rot = torch.cat([x1 * c - x2 * s, x1 * s + x2 * c], dim=-1)
return torch.cat([x_rot.to(x.dtype), x_pass], dim=-1)
def _apply_rotary_emb_kv(
kv: torch.FloatTensor, cos: torch.FloatTensor, sin: torch.FloatTensor
) -> torch.FloatTensor:
seqlen, rotary_dim = kv.shape[1], cos.shape[-1] * 2
k_rot = kv[:, :, 0, :, :rotary_dim].chunk(2, dim=-1)
k_pass = kv[:, :, 0, :, rotary_dim:]
c, s = cos[:seqlen].unsqueeze(1), sin[:seqlen].unsqueeze(1)
k_rot = torch.cat(
[k_rot[0] * c - k_rot[1] * s, k_rot[0] * s + k_rot[1] * c], dim=-1
)
return torch.cat(
[torch.cat([k_rot, k_pass], dim=-1).unsqueeze(2), kv[:, :, 1:2, :, :]], dim=2
)
def _apply_rotary_emb_qkv(
qkv: torch.FloatTensor, cos: torch.FloatTensor, sin: torch.FloatTensor
) -> torch.FloatTensor:
seqlen, rotary_dim = qkv.shape[1], cos.shape[1] * 2
c = cos[:seqlen].unsqueeze(1)
s = sin[:seqlen].unsqueeze(1)
qkv_rot = torch.stack(
[
torch.cat(
[
qkv[:, :, i, :, : rotary_dim // 2] * c
- qkv[:, :, i, :, rotary_dim // 2 : rotary_dim] * s,
qkv[:, :, i, :, : rotary_dim // 2] * s
+ qkv[:, :, i, :, rotary_dim // 2 : rotary_dim] * c,
],
dim=-1,
).to(qkv.dtype)
for i in range(2)
],
dim=2,
)
qkv_pass = qkv[:, :, :2, :, rotary_dim:].unsqueeze(2)
qkv_v = qkv[:, :, 2:3, :, :]
return torch.cat([qkv_rot, qkv_pass, qkv_v], dim=2)
class RotaryEmbedding(nn.Module):
# Enhanced Transformer with Rotary Position Embedding (https://arxiv.org/pdf/2104.09864.pdf)
def __init__(
self,
dim: int,
base: int = 10000,
scale_base: Optional[float] = None,
pos_idx_in_fp32: bool = True,
max_position_embeddings: int = 2048,
device: Optional[str] = None,
) -> None:
super().__init__()
# fp32 is preferred since the output of `torch.arange` can be quite large and bf16 would lose a lot of precision
self.dim, self.base, self.pos_idx_in_fp32, self.device = (
dim,
float(base),
pos_idx_in_fp32,
device,
)
self.max_position_embeddings = max_position_embeddings
if scale_base is not None:
raise NotImplementedError
# Generate and register the non-trainable buffers
self.register_buffer(
"inv_freq", self._compute_inv_freq(device), persistent=False
)
self.register_buffer(
"scale", self._calculate_scale(dim, scale_base, device), persistent=False
)
self._update_cos_sin_cache(
max_position_embeddings, device=device, dtype=torch.float32
)
def _calculate_scale(self, dim, scale_base, device):
return (
(
(
torch.arange(0, dim, 2, device=device, dtype=torch.float32)
+ 0.4 * dim
)
/ (1.4 * dim)
)
if scale_base is not None
else None
)
def _compute_inv_freq(self, device: Optional[str] = None) -> torch.FloatTensor:
return 1.0 / (
self.base
** (
torch.arange(0, self.dim, 2, device=device, dtype=torch.float32)
/ self.dim
)
)
def _update_cos_sin_cache(
self,
seqlen: int,
device: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
) -> None:
self._seq_len_cached = seqlen
t = torch.arange(
seqlen,
device=device,
dtype=torch.float32 if self.pos_idx_in_fp32 else self.inv_freq.dtype,
)
inv_freq = (
self._compute_inv_freq(device=device)
if self.pos_idx_in_fp32 and self.inv_freq.dtype != torch.float32
else self.inv_freq
)
freqs = torch.outer(t, inv_freq)
def apply_scale(freqs, scale, operator, dtype):
result = operator(freqs)
return (result / scale).to(dtype) if scale is not None else result.to(dtype)
if scale := self.scale:
power = (
torch.arange(seqlen, dtype=scale.dtype, device=scale.device)
- seqlen // 2
) / self.scale_base
scale = scale.to(device=power.device) ** power.unsqueeze(1)
self._cos_cached = apply_scale(
freqs, 1 / scale if scale is not None else None, torch.cos, dtype
)
self._sin_cached = apply_scale(
freqs, 1 / scale if scale is not None else None, torch.sin, dtype
)
if scale is not None:
self._cos_k_cached = apply_scale(freqs, scale, torch.cos, dtype)
self._sin_k_cached = apply_scale(freqs, scale, torch.sin, dtype)
def forward(
self,
qkv: torch.Tensor,
kv: Optional[torch.Tensor] = None,
seqlen_offset: int = 0,
) -> Tuple[torch.Tensor, torch.Tensor]:
should_update = (
self._seq_len_cached < qkv.shape[1] + seqlen_offset
or self._cos_cached.device != qkv.device
or self._cos_cached.dtype != qkv.dtype
or (self.training and self._cos_cached.is_inference())
)
if should_update:
self._update_cos_sin_cache(
qkv.shape[1] + seqlen_offset, device=qkv.device, dtype=qkv.dtype
)
offset_cos = self._cos_cached[seqlen_offset:]
offset_sin = self._sin_cached[seqlen_offset:]
if kv is None:
return _apply_rotary_emb_qkv(qkv, offset_cos, offset_sin)
else:
return _apply_rotary_emb(qkv, offset_cos, offset_sin), _apply_rotary_emb_kv(
kv, offset_cos, offset_sin
)
class MLP(nn.Module):
def __init__(
self,
config: PretrainedConfig,
n_inner: Optional[int] = None,
act_fn: Optional[str] = None,
) -> None:
super().__init__()
n_inner = n_inner or getattr(config, "n_inner", None) or 4 * config.n_embd
act_fn = act_fn or config.activation_function
self.fc1 = nn.Linear(config.n_embd, n_inner)
self.fc2 = nn.Linear(n_inner, config.n_embd)
self.act = ACT2FN[act_fn]
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
return self.fc2(self.act(self.fc1(hidden_states)))
# Flash Attention (https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py)
class SelfAttention(nn.Module):
def __init__(
self,
causal: bool = True,
softmax_scale: Optional[float] = None,
attention_dropout: float = 0.0,
):
super().__init__()
self.causal = causal
self.softmax_scale = softmax_scale
self.drop = nn.Dropout(attention_dropout)
@torch.autocast("cpu", enabled=False)
@torch.autocast("cuda", enabled=False)
def forward(
self,
qkv: torch.FloatTensor,
causal: Optional[bool] = None,
key_padding_mask: Optional[torch.BoolTensor] = None,
):
q, k, v = qkv.chunk(3, dim=-1)
scale = self.softmax_scale or 1.0 / q.size(-1) ** 0.5
scores = (
torch.einsum("bthd,bshd->bhts", q.to(torch.float32), k.to(torch.float32))
* scale
)
if causal or self.causal:
scores.triu_(1).fill_(-10000.0)
if key_padding_mask is not None:
scores.masked_fill_(key_padding_mask[:, None, None, :], -10000.0)
attn = self.drop(torch.softmax(scores, dim=-1).to(v.dtype))
return torch.einsum("bhts,bshd->bthd", attn, v)
# Flash Attention (https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py)
class CrossAttention(nn.Module):
def __init__(self, causal=True, softmax_scale=None, attention_dropout=0.0):
super().__init__()
self.causal = causal
self.softmax_scale = softmax_scale
self.drop = nn.Dropout(attention_dropout)
@torch.autocast("cpu", enabled=False)
@torch.autocast("cuda", enabled=False)
def forward(
self,
q: torch.FloatTensor,
kv: torch.FloatTensor,
causal: bool = None,
key_padding_mask: Optional[torch.BoolTensor] = None,
) -> torch.FloatTensor:
batch_size, seqlen_q = q.shape[0], q.shape[1]
seqlen_k = kv.shape[1]
if kv.shape[3] != q.shape[2]:
kv = repeat(kv, "... hkv d -> ... (hkv g) d", g=q.shape[2] // kv.shape[3])
k, v = kv.unbind(dim=2)
q = q.to(torch.float32)
k = k.to(torch.float32)
causal = self.causal if causal is None else causal
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
# Autocast is manually disabled to avoid `torch.einsum` performing the operation using float16, which might lead to overflow
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
if key_padding_mask is not None:
padding_mask = torch.full(
(batch_size, seqlen_k),
-10000.0,
dtype=scores.dtype,
device=scores.device,
)
padding_mask.masked_fill_(key_padding_mask, 0.0)
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
if causal:
rows = rearrange(
torch.arange(seqlen_q, device=q.device, dtype=torch.long), "s -> s 1"
)
cols = torch.arange(seqlen_k, device=k.device, dtype=torch.long)
causal_mask = cols > rows + seqlen_k - seqlen_q
scores = scores.masked_fill(causal_mask, -10000.0)
attention = torch.softmax(scores, dim=-1).to(v.dtype)
attention = self.drop(attention)
output = torch.einsum("bhts,bshd->bthd", attention, v)
return output
def _find_mha_dims(
config: PretrainedConfig,
n_head: Optional[int] = None,
n_head_kv: Optional[int] = None,
head_dim: Optional[int] = None,
) -> Tuple[int, int]:
if n_head is None and head_dim is None:
head_dim = config.n_embd // config.n_head
n_head = config.n_head
elif n_head is None or head_dim is None:
raise ValueError("`n_head` and `head_dim` must be both specified or `None`.")
if n_head_kv is None:
n_head_kv = getattr(config, "n_head_kv", None) or n_head
return n_head, n_head_kv, head_dim
def _update_kv_cache(
kv: torch.FloatTensor, inference_params: InferenceParams, layer_idx: int
) -> torch.FloatTensor:
num_heads, head_dim = kv.shape[-2:]
layer_memory = inference_params.key_value_memory_dict.setdefault(
layer_idx,
torch.empty(
inference_params.max_batch_size,
inference_params.max_seqlen,
2,
num_heads,
head_dim,
dtype=kv.dtype,
device=kv.device,
),
)
batch_slice = slice(
inference_params.batch_size_offset,
inference_params.batch_size_offset + kv.shape[0],
)
seqlen_slice = slice(
inference_params.seqlen_offset, inference_params.seqlen_offset + kv.shape[1]
)
if seqlen_slice.stop >= inference_params.max_seqlen:
layer_memory = torch.cat((layer_memory, kv), dim=1)
inference_params.key_value_memory_dict[layer_idx] = layer_memory
layer_memory[batch_slice, seqlen_slice, ...] = kv
return layer_memory[batch_slice, : seqlen_slice.stop, ...]
# Multi-head attention layer with rotary embeddings
class MHA(nn.Module):
def __init__(
self,
config,
dtype=None,
device=None,
rotary_dim=None,
rotary_base=10000.0,
rotary_scale_base=None,
n_head=None,
n_head_kv=None,
head_dim=None,
bias=True,
causal=True,
softmax_scale=None,
layer_idx=None,
return_residual=False,
checkpointing=False,
):
super().__init__()
# Set rotary embedding if specified
self.rotary_dim = rotary_dim or getattr(config, "rotary_dim", 0)
if self.rotary_dim:
self.rotary_emb = RotaryEmbedding(
self.rotary_dim,
base=rotary_base,
scale_base=rotary_scale_base,
device=device,
max_position_embeddings=config.n_positions,
)
# Determine MHA dims from arguments or config
self.n_head, self.n_head_kv, self.head_dim = _find_mha_dims(
config, n_head, n_head_kv, head_dim
)
op_size = self.head_dim * (self.n_head + 2 * self.n_head_kv)
hidden_size = config.n_embd
# Choose Linear class based on config, FusedDense is optional
LinearClass = (
FusedDense if config.fused_dense and FusedDense is not None else nn.Linear
)
self.Wqkv = LinearClass(
hidden_size, op_size, bias=bias, device=device, dtype=dtype
)
self.out_proj = LinearClass(
hidden_size, hidden_size, bias=bias, device=device, dtype=dtype
)
# Initialize attention mechanisms
attn_kwargs = {
"causal": causal,
"softmax_scale": softmax_scale,
"attention_dropout": config.attn_pdrop,
}
self.inner_attn = SelfAttention(**attn_kwargs)
self.inner_cross_attn = CrossAttention(**attn_kwargs)
self.layer_idx = layer_idx
self.return_residual = return_residual
self.checkpointing = checkpointing
def _forward_self_attn(
self, x: torch.FloatTensor, key_padding_mask: Optional[torch.BoolTensor]
) -> torch.FloatTensor:
qkv = rearrange(
self.Wqkv(x), "... (three h d) -> ... three h d", three=3, d=self.head_dim
)
if self.rotary_dim > 0:
qkv = self.rotary_emb(qkv)
attn_func = (
torch.utils.checkpoint.checkpoint
if self.checkpointing
else lambda f, *args, **kwargs: f(*args, **kwargs)
)
return attn_func(self.inner_attn, qkv, key_padding_mask=key_padding_mask)
def _forward_cross_attn(
self,
x: torch.FloatTensor,
past_key_values: Optional[InferenceParams],
key_padding_mask: Optional[torch.BoolTensor],
) -> torch.FloatTensor:
qkv = self.Wqkv(x)
q, kv = (
qkv[..., : self.n_head * self.head_dim],
qkv[..., self.n_head * self.head_dim :],
)
q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim)
kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim)
seqlen_offset = (
past_key_values.seqlen_offset if past_key_values is not None else 0
)
causal = None if seqlen_offset == 0 else False
if self.rotary_dim > 0:
q, kv = self.rotary_emb(q, kv=kv, seqlen_offset=seqlen_offset)
if past_key_values is not None:
kv = _update_kv_cache(kv, past_key_values, self.layer_idx)
attn_func = (
torch.utils.checkpoint.checkpoint
if self.checkpointing
else lambda fn, *args, **kwargs: fn(*args, **kwargs)
)
return attn_func(
self.inner_cross_attn,
q,
kv,
key_padding_mask=key_padding_mask,
causal=causal,
)
def forward(
self,
x: torch.FloatTensor,
past_key_values: Optional[InferenceParams] = None,
attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
attention_mask = attention_mask.bool() if attention_mask is not None else None
use_cross_attn = self.n_head != self.n_head_kv or past_key_values is not None
attn_output_function = (
self._forward_cross_attn if use_cross_attn else self._forward_self_attn
)
attn_output = (
attn_output_function(x, past_key_values, attention_mask)
if use_cross_attn
else attn_output_function(x, attention_mask)
)
output = self.out_proj(rearrange(attn_output, "... h d -> ... (h d)"))
return (output, x) if self.return_residual else output
# Parallel block. This block applies parallel mixer and MLP layers to the input (used in GPT-J and CodeGen).
class ParallelBlock(nn.Module):
def __init__(self, config: PretrainedConfig, block_idx: Optional[int] = None):
super().__init__()
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
self.resid_dropout = nn.Dropout(config.resid_pdrop)
self.block_idx = block_idx
self.mixer = MHA(config, layer_idx=block_idx)
self.mlp = MLP(config)
def forward(
self,
hidden_states: torch.FloatTensor,
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
attention_mask: Optional[torch.BoolTensor] = None,
) -> torch.FloatTensor:
residual = hidden_states
hidden_states = self.ln(hidden_states)
attn_outputs = self.mixer(
hidden_states,
past_key_values=past_key_values,
attention_mask=attention_mask,
)
if isinstance(attn_outputs, tuple):
attn_outputs = attn_outputs[0]
attn_outputs = self.resid_dropout(attn_outputs)
feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states))
return attn_outputs + feed_forward_hidden_states + residual
class CausalLMHead(nn.Module):
"""Causal Language Modeling head. Simplified version."""
def __init__(self, config):
super().__init__()
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
self.linear = nn.Linear(config.n_embd, config.vocab_size)
def forward(self, hidden_states):
return self.linear(self.ln(hidden_states)).to(torch.float32)
# Improving Language Understanding by Generative Pre-Training
# (https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf)
class CausalLMLoss(nn.Module):
def __init__(self, shift_labels: bool = True) -> None:
super().__init__()
self.shift_labels = shift_labels
self.loss_fct = nn.CrossEntropyLoss()
def forward(
self, logits: torch.FloatTensor, labels: torch.LongTensor
) -> torch.FloatTensor:
if self.shift_labels:
logits, labels = logits[..., :-1, :], labels[..., 1:]
return self.loss_fct(logits.reshape(-1, logits.size(-1)), labels.reshape(-1))
class PhiPreTrainedModel(PreTrainedModel):
config_class = PhiConfig
base_model_prefix = "transformer"
supports_gradient_checkpointing = False
_no_split_modules = ["ParallelBlock"]
def __init__(self, *inputs, **kwargs) -> None:
super().__init__(*inputs, **kwargs)
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor = None,
inputs_embeds: torch.FloatTensor = None,
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
**kwargs,
) -> Dict[str, Any]:
if input_ids is None and inputs_embeds is None:
raise ValueError(
"You have to specify either `input_ids` or `inputs_embeds`."
)
max_batch_size = (
inputs_embeds.shape[0] if inputs_embeds is not None else input_ids.shape[0]
)
seqlen_offset = (
inputs_embeds.shape[1] + input_ids.shape[1] - 2
if inputs_embeds is not None
else input_ids.shape[1] - 1
)
args = (
{"inputs_embeds": inputs_embeds}
if inputs_embeds is not None
else {"input_ids": input_ids}
)
if not isinstance(past_key_values, InferenceParams):
past_key_values = InferenceParams(
max_seqlen=self.config.n_positions,
max_batch_size=max_batch_size,
seqlen_offset=0,
batch_size_offset=0,
key_value_memory_dict={},
lengths_per_sample=None,
)
else:
past_key_values.seqlen_offset = seqlen_offset
args = {"input_ids": input_ids[:, -1].unsqueeze(-1)}
return {
**args,
"past_key_values": past_key_values,
"attention_mask": attention_mask,
}
class PhiModel(PhiPreTrainedModel):
_keys_to_ignore_on_load_missing = [""]
_keys_to_ignore_on_load_unexpected = [r"h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"]
def __init__(self, config: PhiConfig) -> None:
super().__init__(config)
self.embd = Embedding(config)
self.h = nn.ModuleList(
[ParallelBlock(config, block_idx=i) for i in range(config.n_layer)]
)
self.gradient_checkpointing = config.gradient_checkpointing
self.post_init()
def get_input_embeddings(self) -> nn.Embedding:
return self.embd.wte
def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None:
self.embd.wte = new_embeddings
def forward(
self,
input_ids: torch.LongTensor = None,
inputs_embeds: torch.FloatTensor = None,
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
attention_mask: Optional[torch.BoolTensor] = None,
) -> torch.FloatTensor:
if (input_ids is None) == (inputs_embeds is None):
raise ValueError("Specify exactly one of `input_ids` or `inputs_embeds`.")
hidden_states = self.embd(input_ids) if input_ids is not None else inputs_embeds
for layer in self.h:
func = layer.__call__ if self.gradient_checkpointing else layer
args = (hidden_states, past_key_values, attention_mask)
hidden_states = (
torch.utils.checkpoint.checkpoint(func, *args, use_reentrant=True)
if self.gradient_checkpointing
else func(*args)
)
return hidden_states
class PhiForCausalLM(PhiPreTrainedModel):
_keys_to_ignore_on_load_missing, _keys_to_ignore_on_load_unexpected = (
[""],
[r"transformer\.h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"],
)
def __init__(self, config: PhiConfig) -> None:
super().__init__(config)
self.transformer = PhiModel(config)
self.lm_head = CausalLMHead(config)
self.loss = CausalLMLoss()
self.post_init()
def get_output_embeddings(self) -> nn.Linear:
return self.lm_head.linear
def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
self.lm_head.linear = new_embeddings
def forward(
self,
input_ids: torch.LongTensor = None,
inputs_embeds: torch.FloatTensor = None,
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
attention_mask: Optional[torch.BoolTensor] = None,
labels: Optional[torch.LongTensor] = None,
**kwargs,
) -> CausalLMOutputWithPast:
hidden_states = self.transformer(
input_ids=input_ids,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
attention_mask=attention_mask,
)
lm_logits = self.lm_head(hidden_states)
loss = self.loss(lm_logits, labels) if labels is not None else None
return CausalLMOutputWithPast(
loss=loss, logits=lm_logits, past_key_values=past_key_values
)