|
--- |
|
library_name: paddlenlp |
|
license: apache-2.0 |
|
datasets: |
|
- xnli |
|
- mlqa |
|
- paws-x |
|
language: |
|
- fr |
|
- es |
|
- en |
|
- de |
|
- sw |
|
- ru |
|
- zh |
|
- el |
|
- bg |
|
- ar |
|
- vi |
|
- th |
|
- hi |
|
- ur |
|
--- |
|
|
|
### Disclaimer :- I don't own the weights of `ernie-m-large` neither did I train the model. I only converted the model weights from paddle to pytorch(using the scripts listed in files). |
|
The real(paddle) weights can be found [here](https://huggingface.co/PaddlePaddle/ernie-m-large). |
|
|
|
The rest of the README is copied from the same page listed above, |
|
|
|
[![paddlenlp-banner](https://user-images.githubusercontent.com/1371212/175816733-8ec25eb0-9af3-4380-9218-27c154518258.png)](https://github.com/PaddlePaddle/PaddleNLP) |
|
|
|
# PaddlePaddle/ernie-m-base |
|
|
|
## Ernie-M |
|
|
|
ERNIE-M, proposed by Baidu, is a new training method that encourages the model to align the representation of multiple languages with monolingual corpora, |
|
to overcome the constraint that the parallel corpus size places on the model performance. The insight is to integrate back-translation into the pre-training |
|
process by generating pseudo-parallel sentence pairs on a monolingual corpus to enable the learning of semantic alignments between different languages, |
|
thereby enhancing the semantic modeling of cross-lingual models. Experimental results show that ERNIE-M outperforms existing cross-lingual models and |
|
delivers new state-of-the-art results in various cross-lingual downstream tasks. |
|
|
|
We proposed two novel methods to align the representation of multiple languages: |
|
|
|
Cross-Attention Masked Language Modeling(CAMLM): In CAMLM, we learn the multilingual semantic representation by restoring the MASK tokens in the input sentences. |
|
Back-Translation masked language modeling(BTMLM): We use BTMLM to train our model to generate pseudo-parallel sentences from the monolingual sentences. The generated pairs are then used as the input of the model to further align the cross-lingual semantics, thus enhancing the multilingual representation. |
|
|
|
![ernie-m](ernie_m.png) |
|
|
|
## Benchmark |
|
|
|
### XNLI |
|
|
|
XNLI is a subset of MNLI and has been translated into 14 different kinds of languages including some low-resource languages. The goal of the task is to predict testual entailment (whether sentence A implies / contradicts / neither sentence B). |
|
|
|
| Model | en | fr | es | de | el | bg | ru | tr | ar | vi | th | zh | hi | sw | ur | Avg | |
|
| ---------------------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | |
|
| Cross-lingual Transfer | | | | | | | | | | | | | | | | | |
|
| XLM | 85.0 | 78.7 | 78.9 | 77.8 | 76.6 | 77.4 | 75.3 | 72.5 | 73.1 | 76.1 | 73.2 | 76.5 | 69.6 | 68.4 | 67.3 | 75.1 | |
|
| Unicoder | 85.1 | 79.0 | 79.4 | 77.8 | 77.2 | 77.2 | 76.3 | 72.8 | 73.5 | 76.4 | 73.6 | 76.2 | 69.4 | 69.7 | 66.7 | 75.4 | |
|
| XLM-R | 85.8 | 79.7 | 80.7 | 78.7 | 77.5 | 79.6 | 78.1 | 74.2 | 73.8 | 76.5 | 74.6 | 76.7 | 72.4 | 66.5 | 68.3 | 76.2 | |
|
| INFOXLM | **86.4** | **80.6** | 80.8 | 78.9 | 77.8 | 78.9 | 77.6 | 75.6 | 74.0 | 77.0 | 73.7 | 76.7 | 72.0 | 66.4 | 67.1 | 76.2 | |
|
| **ERNIE-M** | 85.5 | 80.1 | **81.2** | **79.2** | **79.1** | **80.4** | **78.1** | **76.8** | **76.3** | **78.3** | **75.8** | **77.4** | **72.9** | **69.5** | **68.8** | **77.3** | |
|
| XLM-R Large | 89.1 | 84.1 | 85.1 | 83.9 | 82.9 | 84.0 | 81.2 | 79.6 | 79.8 | 80.8 | 78.1 | 80.2 | 76.9 | 73.9 | 73.8 | 80.9 | |
|
| INFOXLM Large | **89.7** | 84.5 | 85.5 | 84.1 | 83.4 | 84.2 | 81.3 | 80.9 | 80.4 | 80.8 | 78.9 | 80.9 | 77.9 | 74.8 | 73.7 | 81.4 | |
|
| VECO Large | 88.2 | 79.2 | 83.1 | 82.9 | 81.2 | 84.2 | 82.8 | 76.2 | 80.3 | 74.3 | 77.0 | 78.4 | 71.3 | **80.4** | **79.1** | 79.9 | |
|
| **ERNIR-M Large** | 89.3 | **85.1** | **85.7** | **84.4** | **83.7** | **84.5** | 82.0 | **81.2** | **81.2** | **81.9** | **79.2** | **81.0** | **78.6** | 76.2 | 75.4 | **82.0** | |
|
| Translate-Train-All | | | | | | | | | | | | | | | | | |
|
| XLM | 85.0 | 80.8 | 81.3 | 80.3 | 79.1 | 80.9 | 78.3 | 75.6 | 77.6 | 78.5 | 76.0 | 79.5 | 72.9 | 72.8 | 68.5 | 77.8 | |
|
| Unicoder | 85.6 | 81.1 | 82.3 | 80.9 | 79.5 | 81.4 | 79.7 | 76.8 | 78.2 | 77.9 | 77.1 | 80.5 | 73.4 | 73.8 | 69.6 | 78.5 | |
|
| XLM-R | 85.4 | 81.4 | 82.2 | 80.3 | 80.4 | 81.3 | 79.7 | 78.6 | 77.3 | 79.7 | 77.9 | 80.2 | 76.1 | 73.1 | 73.0 | 79.1 | |
|
| INFOXLM | 86.1 | 82.0 | 82.8 | 81.8 | 80.9 | 82.0 | 80.2 | 79.0 | 78.8 | 80.5 | 78.3 | 80.5 | 77.4 | 73.0 | 71.6 | 79.7 | |
|
| **ERNIE-M** | **86.2** | **82.5** | **83.8** | **82.6** | **82.4** | **83.4** | **80.2** | **80.6** | **80.5** | **81.1** | **79.2** | **80.5** | **77.7** | **75.0** | **73.3** | **80.6** | |
|
| XLM-R Large | 89.1 | 85.1 | 86.6 | 85.7 | 85.3 | 85.9 | 83.5 | 83.2 | 83.1 | 83.7 | 81.5 | **83.7** | **81.6** | 78.0 | 78.1 | 83.6 | |
|
| VECO Large | 88.9 | 82.4 | 86.0 | 84.7 | 85.3 | 86.2 | **85.8** | 80.1 | 83.0 | 77.2 | 80.9 | 82.8 | 75.3 | **83.1** | **83.0** | 83.0 | |
|
| **ERNIE-M Large** | **89.5** | **86.5** | **86.9** | **86.1** | **86.0** | **86.8** | 84.1 | **83.8** | **84.1** | **84.5** | **82.1** | 83.5 | 81.1 | 79.4 | 77.9 | **84.2** | |
|
|
|
### Cross-lingual Named Entity Recognition |
|
|
|
* datasets:CoNLI |
|
|
|
| Model | en | nl | es | de | Avg | |
|
| ------------------------------ | --------- | --------- | --------- | --------- | --------- | |
|
| *Fine-tune on English dataset* | | | | | | |
|
| mBERT | 91.97 | 77.57 | 74.96 | 69.56 | 78.52 | |
|
| XLM-R | 92.25 | **78.08** | 76.53 | **69.60** | 79.11 | |
|
| **ERNIE-M** | **92.78** | 78.01 | **79.37** | 68.08 | **79.56** | |
|
| XLM-R LARGE | 92.92 | 80.80 | 78.64 | 71.40 | 80.94 | |
|
| **ERNIE-M LARGE** | **93.28** | **81.45** | **78.83** | **72.99** | **81.64** | |
|
| *Fine-tune on all dataset* | | | | | | |
|
| XLM-R | 91.08 | 89.09 | 87.28 | 83.17 | 87.66 | |
|
| **ERNIE-M** | **93.04** | **91.73** | **88.33** | **84.20** | **89.32** | |
|
| XLM-R LARGE | 92.00 | 91.60 | **89.52** | 84.60 | 89.43 | |
|
| **ERNIE-M LARGE** | **94.01** | **93.81** | 89.23 | **86.20** | **90.81** | |
|
|
|
### Cross-lingual Question Answering |
|
|
|
* datasets:MLQA |
|
|
|
| Model | en | es | de | ar | hi | vi | zh | Avg | |
|
| ----------------- | --------------- | --------------- | --------------- | --------------- | --------------- | --------------- | --------------- | --------------- | |
|
| mBERT | 77.7 / 65.2 | 64.3 / 46.6 | 57.9 / 44.3 | 45.7 / 29.8 | 43.8 / 29.7 | 57.1 / 38.6 | 57.5 / 37.3 | 57.7 / 41.6 | |
|
| XLM | 74.9 / 62.4 | 68.0 / 49.8 | 62.2 / 47.6 | 54.8 / 36.3 | 48.8 / 27.3 | 61.4 / 41.8 | 61.1 / 39.6 | 61.6 / 43.5 | |
|
| XLM-R | 77.1 / 64.6 | 67.4 / 49.6 | 60.9 / 46.7 | 54.9 / 36.6 | 59.4 / 42.9 | 64.5 / 44.7 | 61.8 / 39.3 | 63.7 / 46.3 | |
|
| INFOXLM | 81.3 / 68.2 | 69.9 / 51.9 | 64.2 / 49.6 | 60.1 / 40.9 | 65.0 / 47.5 | 70.0 / 48.6 | 64.7 / **41.2** | 67.9 / 49.7 | |
|
| **ERNIE-M** | **81.6 / 68.5** | **70.9 / 52.6** | **65.8 / 50.7** | **61.8 / 41.9** | **65.4 / 47.5** | **70.0 / 49.2** | **65.6** / 41.0 | **68.7 / 50.2** | |
|
| XLM-R LARGE | 80.6 / 67.8 | 74.1 / 56.0 | 68.5 / 53.6 | 63.1 / 43.5 | 62.9 / 51.6 | 71.3 / 50.9 | 68.0 / 45.4 | 70.7 / 52.7 | |
|
| INFOXLM LARGE | **84.5 / 71.6** | **75.1 / 57.3** | **71.2 / 56.2** | **67.6 / 47.6** | 72.5 / 54.2 | **75.2 / 54.1** | 69.2 / 45.4 | 73.6 / 55.2 | |
|
| **ERNIE-M LARGE** | 84.4 / 71.5 | 74.8 / 56.6 | 70.8 / 55.9 | 67.4 / 47.2 | **72.6 / 54.7** | 75.0 / 53.7 | **71.1 / 47.5** | **73.7 / 55.3** | |
|
|
|
### Cross-lingual Paraphrase Identification |
|
|
|
* datasets:PAWS-X |
|
|
|
| Model | en | de | es | fr | ja | ko | zh | Avg | |
|
| ---------------------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | |
|
| Cross-lingual Transfer | | | | | | | | | |
|
| mBERT | 94.0 | 85.7 | 87.4 | 87.0 | 73.0 | 69.6 | 77.0 | 81.9 | |
|
| XLM | 94.0 | 85.9 | 88.3 | 87.4 | 69.3 | 64.8 | 76.5 | 80.9 | |
|
| MMTE | 93.1 | 85.1 | 87.2 | 86.9 | 72.0 | 69.2 | 75.9 | 81.3 | |
|
| XLM-R LARGE | 94.7 | 89.7 | 90.1 | 90.4 | 78.7 | 79.0 | 82.3 | 86.4 | |
|
| VECO LARGE | **96.2** | 91.3 | 91.4 | 92.0 | 81.8 | 82.9 | 85.1 | 88.7 | |
|
| **ERNIE-M LARGE** | 96.0 | **91.9** | **91.4** | **92.2** | **83.9** | **84.5** | **86.9** | **89.5** | |
|
| Translate-Train-All | | | | | | | | | |
|
| VECO LARGE | 96.4 | 93.0 | 93.0 | 93.5 | 87.2 | 86.8 | 87.9 | 91.1 | |
|
| **ERNIE-M LARGE** | **96.5** | **93.5** | **93.3** | **93.8** | **87.9** | **88.4** | **89.2** | **91.8** | |
|
|
|
|
|
### Cross-lingual Sentence Retrieval |
|
|
|
* dataset:Tatoeba |
|
|
|
| Model | Avg | |
|
| --------------------------------------- | -------- | |
|
| XLM-R LARGE | 75.2 | |
|
| VECO LARGE | 86.9 | |
|
| **ERNIE-M LARGE** | **87.9** | |
|
| **ERNIE-M LARGE( after fine-tuning)** | **93.3** | |
|
|
|
|
|
## Citation Info |
|
|
|
```text |
|
@article{Ouyang2021ERNIEMEM, |
|
title={ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora}, |
|
author={Xuan Ouyang and Shuohuan Wang and Chao Pang and Yu Sun and Hao Tian and Hua Wu and Haifeng Wang}, |
|
journal={ArXiv}, |
|
year={2021}, |
|
volume={abs/2012.15674} |
|
} |
|
``` |